Elise Rotureau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7817855/publications.pdf

Version: 2024-02-01

623188 642321 34 567 14 23 h-index citations g-index papers 35 35 35 425 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Amphiphilic Polysaccharides: Useful Tools for the Preparation of Nanoparticles with Controlled Surface Characteristics. Langmuir, 2004, 20, 6956-6963.	1.6	56
2	Amphiphilic derivatives of dextran: Adsorption at air/water and oil/water interfaces. Journal of Colloid and Interface Science, 2004, 279, 68-77.	5.0	42
3	Viscosity of aqueous solutions of polysaccharides and hydrophobically modified polysaccharides: Application of Fedors equation. European Polymer Journal, 2006, 42, 1086-1092.	2.6	41
4	Neutral Polymeric Surfactants Derived from Dextran: A Study of Their Aqueous Solution Behavior. Macromolecular Chemistry and Physics, 2005, 206, 2038-2046.	1.1	39
5	From polymeric surfactants to colloidal systems (1): Amphiphilic dextrans for emulsion preparation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 288, 131-137.	2.3	37
6	From polymeric surfactants to colloidal systems (2): Preparation of colloidal dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 288, 62-70.	2.3	33
7	Structure of Multiresponsive Brush-Decorated Nanoparticles: A Combined Electrokinetic, DLS, and SANS Study. Langmuir, 2015, 31, 4779-4790.	1.6	31
8	Relationship between Swelling and the Electrohydrodynamic Properties of Functionalized Carboxymethyldextran Macromolecules. Langmuir, 2007, 23, 8460-8473.	1.6	23
9	From polymeric surfactants to colloidal systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 308, 25-32.	2.3	23
10	Application of amphiphilic polysaccharides as stabilizers in direct and inverse free-radical miniemulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 331, 84-90.	2.3	22
11	Emulsifying properties of neutral and ionic polymer surfactants based on dextran. Physical Chemistry Chemical Physics, 2004, 6, 1430-1438.	1.3	19
12	From polymeric surfactants to colloidal systems (3): Neutral and anionic polymeric surfactants derived from dextran. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 229-238.	2.3	19
13	Analysis of metal speciation dynamics in clay minerals dispersion by stripping chronopotentiometry techniques. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 291-297.	2.3	18
14	Dynamics of metal uptake by charged soft biointerphases: impacts of depletion, internalisation, adsorption and excretion. Physical Chemistry Chemical Physics, 2014, 16, 7401-7416.	1.3	17
15	Addressing the electrostatic component of protons binding to aquatic nanoparticles beyond the Non-Ideal Competitive Adsorption (NICA)-Donnan level: Theory and application to analysis of proton titration data for humic matter. Journal of Colloid and Interface Science, 2021, 583, 642-651.	5.0	16
16	What do luminescent bacterial metal-sensors probe? Insights from confrontation between experiments and flux-based theory. Sensors and Actuators B: Chemical, 2018, 270, 482-491.	4.0	14
17	Concentration Dependence of Aqueous Solution Viscosities of Amphiphilic Polymers. Macromolecules, 2005, 38, 4940-4941.	2.2	13
18	Towards improving the electroanalytical speciation analysis of indium. Analytica Chimica Acta, 2019, 1052, 57-64.	2.6	13

#	Article	IF	CITATIONS
19	Kinetic and thermodynamic determinants of trace metal partitioning at biointerphases: the role of intracellular speciation dynamics. Physical Chemistry Chemical Physics, 2016, 18, 30415-30435.	1.3	12
20	Evaluation of Metal Biouptake from the Analysis of Bulk Metal Depletion Kinetics at Various Cell Concentrations: Theory and Application. Environmental Science & Environmental Science & Proceedings (2015), 49, 990-998.	4.6	11
21	Kinetics of Metal Ion Binding by Polysaccharide Colloids. Journal of Physical Chemistry A, 2008, 112, 7177-7184.	1.1	10
22	Impact of intracellular metallothionein on metal biouptake and partitioning dynamics at bacterial interfaces. Physical Chemistry Chemical Physics, 2017, 19, 29114-29124.	1.3	9
23	Structural effects of soft nanoparticulate ligands on trace metal complexation thermodynamics. Physical Chemistry Chemical Physics, 2016, 18, 31711-31724.	1.3	7
24	Full wave analysis of stripping chronopotentiometry at scanned deposition potential (SSCP): Obtaining binding curves in labile heterogeneous macromolecular systems for any metal-to-ligand ratio. Journal of Electroanalytical Chemistry, 2020, 873, 114436.	1.9	7
25	Impact of metallic ions on electrohydrodynamics of soft colloidal polysaccharides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 16-21.	2.3	6
26	Kinetic Features of Metal Complexes with Polysaccharide Colloids: Impact of Ionic Strength. Journal of Physical Chemistry A, 2009, 113, 12879-12884.	1.1	5
27	Electroanalytical metal sensor with built-in oxygen filter. Analytica Chimica Acta, 2021, 1167, 338544.	2.6	5
28	Investigating the Binding Heterogeneity of Trace Metal Cations With SiO2 Nanoparticles Using Full Wave Analysis of Stripping Chronopotentiometry at Scanned Deposition Potential. Frontiers in Chemistry, 2020, 8, 614574.	1.8	4
29	On the evaluation of the intrinsic stability of indium-nanoparticulate organic matter complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128859.	2.3	4
30	Addressing temperature effects on metal chemodynamics studies using stripping electroanalytical techniques. Part 1: Lability of small complexes. Journal of Electroanalytical Chemistry, 2015, 752, 68-74.	1.9	3
31	Developing On-Site Trace Level Speciation of Lead, Cadmium and Zinc by Stripping Chronopotentiometry (SCP): Fast Screening and Quantification of Total Metal Concentrations. Molecules, 2021, 26, 5502.	1.7	3
32	AGNES in irreversible systems: The indium case. Journal of Electroanalytical Chemistry, 2021, 901, 115750.	1.9	2
33	Light-Responsiveness of C12E6/Polymer Complexes Swollen with Dodecane. Journal of Physical Chemistry B, 2010, 114, 13294-13303.	1.2	1
34	ESPECIAÇÃO DINÃ,MICA DE METAIS TRAÇO EM AMBIENTE AQUÃTICO USANDO CRONOPOTENCIOMETRIA DE REDISSOLUÇÃO ANÓDICA. Química Nova, 2018, , .	0.3	0