Phillip G Popovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7817461/publications.pdf

Version: 2024-02-01

146 papers 19,189 citations

14655 66 h-index 134 g-index

186 all docs

186 docs citations

186 times ranked 18131 citing authors

#	Article	IF	CITATIONS
1	Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord. Journal of Neuroscience, 2009, 29, 13435-13444.	3.6	1,831
2	Basso Mouse Scale for Locomotion Detects Differences in Recovery after Spinal Cord Injury in Five Common Mouse Strains. Journal of Neurotrauma, 2006, 23, 635-659.	3.4	1,253
3	Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental Neurology, 2008, 209, 378-388.	4.1	812
4	Cellular inflammatory response after spinal cord injury in sprague-dawley and lewis rats. Journal of Comparative Neurology, 1997, 377, 443-464.	1.6	810
5	Novel Markers to Delineate Murine M1 and M2 Macrophages. PLoS ONE, 2015, 10, e0145342.	2.5	788
6	Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. Journal of Neuroinflammation, $2011, 8, 110$.	7.2	647
7	Depletion of Hematogenous Macrophages Promotes Partial Hindlimb Recovery and Neuroanatomical Repair after Experimental Spinal Cord Injury. Experimental Neurology, 1999, 158, 351-365.	4.1	619
8	Microglia Induce Motor Neuron Death via the Classical NF-lºB Pathway in Amyotrophic Lateral Sclerosis. Neuron, 2014, 81, 1009-1023.	8.1	527
9	Pattern recognition receptors and central nervous system repair. Experimental Neurology, 2014, 258, 5-16.	4.1	357
10	Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. Journal of Comparative Neurology, 2003, 462, 223-240.	1.6	328
11	Cytokine mRNA Profiles in Contused Spinal Cord and Axotomized Facial Nucleus Suggest a Beneficial Role for Inflammation and Gliosis. Experimental Neurology, 1998, 152, 74-87.	4.1	309
12	The Neuropathological and Behavioral Consequences of Intraspinal Microglial/Macrophage Activation. Journal of Neuropathology and Experimental Neurology, 2002, 61, 623-633.	1.7	269
13	Central Nervous System Regenerative Failure: Role of Oligodendrocytes, Astrocytes, and Microglia. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020602.	5 . 5	258
14	Tollâ€like receptor (TLR)â€2 and TLRâ€4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. Journal of Neurochemistry, 2007, 102, 37-50.	3.9	257
15	Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. Journal of Comparative Neurology, 2006, 494, 578-594.	1.6	255
16	Can the immune system be harnessed to repair the CNS?. Nature Reviews Neuroscience, 2008, 9, 481-493.	10.2	247
17	A Quantitative Spatial Analysis of the Blood–Spinal Cord Barrier. Experimental Neurology, 1996, 142, 258-275.	4.1	237
18	Gut dysbiosis impairs recovery after spinal cord injury. Journal of Experimental Medicine, 2016, 213, 2603-2620.	8.5	236

#	Article	IF	Citations
19	Concept of autoimmunity following spinal cord injury: Possible roles for T lymphocytes in the traumatized central nervous system. Journal of Neuroscience Research, 1996, 45, 349-363.	2.9	235
20	Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats. Experimental Neurology, 2008, 212, 337-347.	4.1	229
21	Immune Activation Promotes Depression 1 Month After Diffuse Brain Injury: A Role for Primed Microglia. Biological Psychiatry, 2014, 76, 575-584.	1.3	209
22	Inflammation and axon regeneration. Current Opinion in Neurology, 2011, 24, 577-583.	3.6	207
23	The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Experimental Neurology, 2014, 258, 121-129.	4.1	204
24	Microglia-organized scar-free spinal cord repair in neonatal mice. Nature, 2020, 587, 613-618.	27.8	197
25	Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity. Journal of Neuroscience, 2009, 29, 3956-3968.	3.6	191
26	Pathological CNS Autoimmune Disease Triggered by Traumatic Spinal Cord Injury: Implications for Autoimmune Vaccine Therapy. Journal of Neuroscience, 2002, 22, 2690-2700.	3.6	188
27	Deficient CX3CR1 Signaling Promotes Recovery after Mouse Spinal Cord Injury by Limiting the Recruitment and Activation of Ly6Clo/iNOS+ Macrophages. Journal of Neuroscience, 2011, 31, 9910-9922.	3.6	188
28	Traumatic Spinal Cord Injury Produced by Controlled Contusion in Mouse. Journal of Neurotrauma, 2000, 17, 299-319.	3.4	187
29	Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends in Pharmacological Sciences, 2003, 24, 13-17.	8.7	184
30	MicroRNAs: Roles in Regulating Neuroinflammation. Neuroscientist, 2018, 24, 221-245.	3.5	184
31	Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Experimental Neurology, 2014, 258, 24-34.	4.1	176
32	IL-4 Signaling Drives a Unique Arginase+/IL- 1 Â+ Microglia Phenotype and Recruits Macrophages to the Inflammatory CNS: Consequences of Age-Related Deficits in IL-4RÂ after Traumatic Spinal Cord Injury. Journal of Neuroscience, 2014, 34, 8904-8917.	3.6	172
33	Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Experimental Neurology, 2007, 207, 75-84.	4.1	169
34	Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. Journal of Neuroinflammation, 2010, 7, 93.	7.2	166
35	B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. Journal of Clinical Investigation, 2009, 119, 2990-2999.	8.2	164
36	Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. Journal of Neurochemistry, 2006, 99, 1073-1087.	3.9	158

#	Article	IF	CITATIONS
37	Replication and reproducibility in spinal cord injury research. Experimental Neurology, 2012, 233, 597-605.	4.1	157
38	Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. Progress in Brain Research, 2009, 175, 125-137.	1.4	137
39	Autonomic Dysreflexia Causes Chronic Immune Suppression after Spinal Cord Injury. Journal of Neuroscience, 2013, 33, 12970-12981.	3.6	134
40	Bone Marrow Chimeric Rats Reveal the Unique Distribution of Resident and Recruited Macrophages in the Contused Rat Spinal Cord. Journal of Neuropathology and Experimental Neurology, 2001, 60, 676-685.	1.7	133
41	Passive or Active Immunization with Myelin Basic Protein Impairs Neurological Function and Exacerbates Neuropathology after Spinal Cord Injury in Rats. Journal of Neuroscience, 2004, 24, 3752-3761.	3.6	129
42	Stress exacerbates neuropathic pain via glucocorticoid and NMDA receptor activation. Brain, Behavior, and Immunity, 2009, 23, 851-860.	4.1	118
43	Control of the Inflammatory Macrophage Transcriptional Signature by miR-155. PLoS ONE, 2016, 11, e0159724.	2,5	117
44	An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology. Journal of Neuroscience Methods, 2009, 181, 36-44.	2.5	116
45	Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct Neuroimmune Activities. Immunity, 2019, 50, 317-333.e6.	14.3	116
46	Cognitive deficits develop 1 month after diffuse brain injury and are exaggerated by microglia-associated reactivity to peripheral immune challenge. Brain, Behavior, and Immunity, 2016, 54, 95-109.	4.1	113
47	Traumatic brain injuryâ€induced neuronal damage in the somatosensory cortex causes formation of rodâ€shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia, 2018, 66, 2719-2736.	4.9	105
48	Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Progress in Brain Research, 2000, 128, 43-58.	1.4	103
49	Development of a Database for Translational Spinal Cord Injury Research. Journal of Neurotrauma, 2014, 31, 1789-1799.	3.4	100
50	Gut Microbiota Are Disease-Modifying Factors After Traumatic Spinal Cord Injury. Neurotherapeutics, 2018, 15, 60-67.	4.4	91
51	Emerging Concepts in Myeloid Cell Biology after Spinal Cord Injury. Neurotherapeutics, 2011, 8, 252-261.	4.4	88
52	Oligodendrocyte Generation Is Differentially Influenced by Toll-Like Receptor (TLR) 2 and TLR4-Mediated Intraspinal Macrophage Activation. Journal of Neuropathology and Experimental Neurology, 2007, 66, 1124-1135.	1.7	87
53	B cells and autoantibodies: complex roles in CNS injury. Trends in Immunology, 2010, 31, 332-338.	6.8	86
54	Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nature Neuroscience, 2016, 19, 784-787.	14.8	86

#	Article	IF	CITATIONS
55	Macrophage Migration Inhibitory Factor Potentiates Autoimmune-Mediated Neuroinflammation. Journal of Immunology, 2013, 191, 1043-1054.	0.8	85
56	Localization of Transforming Growth Factor- \hat{l}^21 and Receptor mRNA after Experimental Spinal Cord Injury. Experimental Neurology, 2000, 163, 220-230.	4.1	84
57	Characterization and modeling of monocyte-derived macrophages after spinal cord injury. Journal of Neurochemistry, 2007, 102, 1083-1094.	3.9	84
58	Stress hormones collaborate to induce lymphocyte apoptosis after high level spinal cord injury. Journal of Neurochemistry, 2009, 110, 1409-1421.	3.9	84
59	Molecular Control of Physiological and Pathological T-Cell Recruitment after Mouse Spinal Cord Injury. Journal of Neuroscience, 2005, 25, 6576-6583.	3. 6	83
60	miR-155 Deletion in Female Mice Prevents Diet-Induced Obesity. Scientific Reports, 2016, 6, 22862.	3.3	83
61	The neuroanatomical–functional paradox in spinal cord injury. Nature Reviews Neurology, 2021, 17, 53-62.	10.1	82
62	Ferritin Stimulates Oligodendrocyte Genesis in the Adult Spinal Cord and Can Be Transferred from Macrophages to NG2 Cells <i>In Vivo</i> Iournal of Neuroscience, 2012, 32, 5374-5384.	3.6	78
63	miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair. Journal of Neuroscience, 2016, 36, 8516-8532.	3. 6	77
64	Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats. PLoS ONE, 2020, 15, e0226128.	2.5	77
65	Minimum Information about a Spinal Cord Injury Experiment: A Proposed Reporting Standard for Spinal Cord Injury Experiments. Journal of Neurotrauma, 2014, 31, 1354-1361.	3.4	74
66	Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury. Brain, 2018, 141, 1946-1962.	7.6	74
67	Hematogenous macrophages express CD8 and distribute to regions of lesion cavitation after spinal cord injury. Experimental Neurology, 2003, 182, 275-287.	4.1	73
68	PPAR Agonists as Therapeutics for CNS Trauma and Neurological Diseases. ASN Neuro, 2013, 5, AN20130030.	2.7	73
69	Toll-Like Receptors and Dectin-1, a C-Type Lectin Receptor, Trigger Divergent Functions in CNS Macrophages. Journal of Neuroscience, 2015, 35, 9966-9976.	3.6	73
70	Alterations in Immune Cell Phenotype and Function after Experimental Spinal Cord Injury. Journal of Neurotrauma, 2001, 18, 957-966.	3.4	72
71	Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages. Expert Opinion on Therapeutic Targets, 2011, 15, 505-518.	3.4	72
72	Semi-automated Sholl analysis for quantifying changes in growth and differentiation of neurons and glia. Journal of Neuroscience Methods, 2010, 190, 71-79.	2.5	69

#	Article	IF	CITATIONS
73	Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice. Journal of Neuroscience, 2017, 37, 3568-3587.	3.6	66
74	Elevation of the neurotoxin quinolinic acid occurs following spinal cord trauma. Brain Research, 1994, 633, 348-352.	2.2	63
75	MICAL flavoprotein monooxygenases: Expression during neural development and following spinal cord injuries in the rat. Molecular and Cellular Neurosciences, 2006, 31, 52-69.	2.2	63
76	Debate: "ls Increasing Neuroinflammation Beneficial for Neural Repair?― Journal of NeuroImmune Pharmacology, 2006, 1, 195-211.	4.1	63
77	Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathologica, 2010, 119, 123-133.	7.7	63
78	TLR4 Deficiency Impairs Oligodendrocyte Formation in the Injured Spinal Cord. Journal of Neuroscience, 2016, 36, 6352-6364.	3.6	62
79	Microglia coordinate cellular interactions during spinal cord repair in mice. Nature Communications, 2022, 13, .	12.8	61
80	Spinal Cord Injury Causes Chronic Liver Pathology in Rats. Journal of Neurotrauma, 2015, 32, 159-169.	3.4	60
81	Independent evaluation of the effects of glibenclamide on reducing progressive hemorrhagic necrosis after cervical spinal cord injury. Experimental Neurology, 2012, 233, 615-622.	4.1	58
82	E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord. Glia, 2017, 65, 883-899.	4.9	58
83	Damage control in the nervous system: beware the immune system in spinal cord injury. Nature Medicine, 2009, 15, 736-737.	30.7	57
84	Analysis of TGF- \hat{I}^21 Gene Expression in Contused Rat Spinal Cord Using Quantitative RT-PCR. Journal of Neurotrauma, 1995, 12, 1003-1014.	3.4	56
85	Macrophage migration inhibitory factor (MIF) is essential for inflammatory and neuropathic pain and enhances pain in response to stress. Experimental Neurology, 2012, 236, 351-362.	4.1	56
86	System xcâ^' regulates microglia and macrophage glutamate excitotoxicity in vivo. Experimental Neurology, 2012, 233, 333-341.	4.1	54
87	The spleen as a neuroimmune interface after spinal cord injury. Journal of Neuroimmunology, 2018, 321, 1-11.	2.3	53
88	Emerging targets for reprograming the immune response to promote repair and recovery of function after spinal cord injury. Current Opinion in Neurology, 2018, 31, 334-344.	3.6	51
89	MicroRNA-155 deletion reduces anxiety- and depressive-like behaviors in mice. Psychoneuroendocrinology, 2016, 63, 362-369.	2.7	50
90	Independent evaluation of the anatomical and behavioral effects of Taxol in rat models of spinal cord injury. Experimental Neurology, 2014, 261, 97-108.	4.1	48

#	Article	IF	Citations
91	Developing a data sharing community for spinal cord injury research. Experimental Neurology, 2017, 295, 135-143.	4.1	48
92	p53 Regulates the Neuronal Intrinsic and Extrinsic Responses Affecting the Recovery of Motor Function following Spinal Cord Injury. Journal of Neuroscience, 2012, 32, 13956-13970.	3.6	47
93	Spinal cord injury with unilateral versus bilateral primary hemorrhage â€" Effects of glibenclamide. Experimental Neurology, 2012, 233, 829-835.	4.1	47
94	A Mouse Model of Ischemic Spinal Cord Injury with Delayed Paralysis Caused by Aortic Cross-clamping. Anesthesiology, 2010, 113, 880-891.	2.5	46
95	Glucocorticoids and macrophage migration inhibitory factor (MIF) are neuroendocrine modulators of inflammation and neuropathic pain after spinal cord injury. Seminars in Immunology, 2014, 26, 409-414.	5.6	46
96	The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Experimental Neurology, 2020, 323, 113085.	4.1	46
97	High mobility group box-1 (HMGB1) is increased in injured mouse spinal cord and can elicit neurotoxic inflammation. Brain, Behavior, and Immunity, 2018, 72, 22-33.	4.1	45
98	Effects of gabapentin on muscle spasticity and both induced as well as spontaneous autonomic dysreflexia after complete spinal cord injury. Frontiers in Physiology, 2012, 3, 329.	2.8	44
99	Achieving CNS axon regeneration by manipulating convergent neuro-immune signaling. Cell and Tissue Research, 2012, 349, 201-213.	2.9	42
100	Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Experimental Neurology, 2021, 341, 113704.	4.1	42
101	Toll-Like Receptors in Spinal Cord Injury. Current Topics in Microbiology and Immunology, 2009, 336, 121-136.	1.1	42
102	Macrophage depletion alters the blood–nerve barrier without affecting Schwann cell function after neural injury. Journal of Neuroscience Research, 2007, 85, 766-777.	2.9	41
103	Differential Expression of MHC Class II Antigen in the Contused Rat Spinal Cord. Journal of Neurotrauma, 1993, 10, 37-46.	3.4	39
104	A silver lining of neuroinflammation: Beneficial effects on myelination. Experimental Neurology, 2016, 283, 550-559.	4.1	38
105	Strategies for spinal cord injury repair. Progress in Brain Research, 2000, 128, 3-8.	1.4	34
106	Spinal cord injury causes chronic bone marrow failure. Nature Communications, 2020, 11, 3702.	12.8	34
107	Neuroimmunology of traumatic spinal cord injury: A brief history and overview. Experimental Neurology, 2014, 258, 1-4.	4.1	33
108	A reassessment of a classic neuroprotective combination therapy for spinal cord injured rats: LPS/pregnenolone/indomethacin. Experimental Neurology, 2012, 233, 677-685.	4.1	31

#	Article	IF	Citations
109	Central nervous system and nonâ€eentral nervous system antigen vaccines exacerbate neuropathology caused by nerve injury. European Journal of Neuroscience, 2007, 25, 2053-2064.	2.6	29
110	Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia, 2022, 70, 1359-1379.	4.9	29
111	Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities. MSystems, 2021, 6, .	3.8	28
112	Galectin-1 in injured rat spinal cord: Implications for macrophage phagocytosis and neural repair. Molecular and Cellular Neurosciences, 2015, 64, 84-94.	2.2	27
113	Docosahexaenoic acid reduces microglia phagocytic activity via miR-124 and induces neuroprotection in rodent models of spinal cord contusion injury. Human Molecular Genetics, 2019, 28, 2427-2448.	2.9	27
114	Stress Increases Peripheral Axon Growth and Regeneration through Glucocorticoid Receptor-Dependent Transcriptional Programs. ENeuro, 2017, 4, ENEURO.0246-17.2017.	1.9	27
115	Spinal Cord Neuropathology in Rat Experimental Autoimmune Encephalomyelitis. Journal of Neuropathology and Experimental Neurology, 1997, 56, 1323-1338.	1.7	25
116	Intraspinal TLR4 activation promotes iron storage but does not protect neurons or oligodendrocytes from progressive iron-mediated damage. Experimental Neurology, 2017, 298, 42-56.	4.1	24
117	TGFÎ 2 3 is neuroprotective and alleviates the neurotoxic response induced by aligned poly-l-lactic acid fibers on naÃ $^-$ ve and activated primary astrocytes. Acta Biomaterialia, 2020, 117, 273-282.	8.3	24
118	Serial Systemic Injections of Endotoxin (LPS) Elicit Neuroprotective Spinal Cord Microglia through IL-1-Dependent Cross Talk with Endothelial Cells. Journal of Neuroscience, 2020, 40, 9103-9120.	3.6	23
119	Acute post-injury blockade of $\hat{l}\pm2\hat{l}$ -1 calcium channel subunits prevents pathological autonomic plasticity after spinal cord injury. Cell Reports, 2021, 34, 108667.	6.4	23
120	MiR-155 deletion reduces ischemia-induced paralysis in an aortic aneurysm repair mouse model: Utility of immunohistochemistry and histopathology in understanding etiology of spinal cord paralysis. Annals of Diagnostic Pathology, 2018, 36, 12-20.	1.3	22
121	Wolframin is a novel regulator of tau pathology and neurodegeneration. Acta Neuropathologica, 2022, 143, 547-569.	7.7	22
122	Is Spinal Cord Injury an Autoimmune Disorder?. Neuroscientist, 1998, 4, 71-76.	3 . 5	17
123	Major Histocompatibility Complex Haplotype Determines hsp70-Dependent Protection against Measles Virus Neurovirulence. Journal of Virology, 2009, 83, 5544-5555.	3.4	16
124	Spinal Cord Injury Suppresses Cutaneous Inflammation: Implications for Peripheral Wound Healing. Journal of Neurotrauma, 2017, 34, 1149-1155.	3.4	16
125	RegenBase: a knowledge base of spinal cord injury biology for translational research. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw040.	3.0	14
126	A Quantitative Spatial Analysis of the Blood–Spinal Cord Barrier. Experimental Neurology, 1996, 142, 226-243.	4.1	13

#	Article	IF	Citations
127	Traumatic spinal cord injury in mice with human immune systems. Experimental Neurology, 2015, 271, 432-444.	4.1	13
128	Immune dysfunction after spinal cord injury – A review of autonomic and neuroendocrine mechanisms. Current Opinion in Pharmacology, 2022, 64, 102230.	3.5	13
129	Human immune cells infiltrate the spinal cord and impair recovery after spinal cord injury in humanized mice. Scientific Reports, 2019, 9, 19105.	3.3	12
130	Liver inflammation at the time of spinal cord injury enhances intraspinal pathology, liver injury, metabolic syndrome and locomotor deficits. Experimental Neurology, 2021, 342, 113725.	4.1	12
131	Central nervous system injury–induced immune suppression. Neurosurgical Focus, 2022, 52, E10.	2.3	12
132	Three Promoters Regulate Tissue- and Cell Type-specific Expression of Murine Interleukin-1 Receptor Type I. Journal of Biological Chemistry, 2009, 284, 8703-8713.	3.4	11
133	The Application of Omics Technologies to Study Axon Regeneration and CNS Repair. F1000Research, 2019, 8, 311.	1.6	11
134	Induction of innervation by encapsulated adipocytes with engineered vitamin A metabolism. Translational Research, 2018, 192, 1-14.	5.0	10
135	Thoracic VGluT2 ⁺ Spinal Interneurons Regulate Structural and Functional Plasticity of Sympathetic Networks after High-Level Spinal Cord Injury. Journal of Neuroscience, 2022, 42, 3659-3675.	3.6	9
136	Stress exacerbates neuron loss and microglia proliferation in a rat model of excitotoxic lower motor neuron injury. Brain, Behavior, and Immunity, 2015, 49, 246-254.	4.1	7
137	Drug evaluation: ProCord - a potential cell-based therapy for spinal cord injury. IDrugs: the Investigational Drugs Journal, 2006, 9, 354-60.	0.7	4
138	Genetic deletion of the glucocorticoid receptor in Cx3cr1+ myeloid cells is neuroprotective and improves motor recovery after spinal cord injury. Experimental Neurology, 2022, 355, 114114.	4.1	4
139	Spinal Cord Injury Impairs Lung Immunity in Mice. Journal of Immunology, 2022, 209, 157-170.	0.8	4
140	The Immune System of the Brain. NeuroImmune Biology, 2007, , 127-144.	0.2	2
141	Controversies on the role of inflammationin the injured spinal cord., 2012,, 272-279.		2
142	Acute Dose-Dependent Neuroprotective Effects of Poly(pro- $17\hat{1}^2$ -estradiol) in a Mouse Model of Spinal Contusion Injury. ACS Chemical Neuroscience, 2021, 12, 959-965.	3.5	2
143	Role of Microglia and Macrophages in Secondary Injury of the Traumatized Spinal Cord: Troublemakers or Scapegoats?., 2002,, 152-165.		1
144	Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity. Spinal Surgery, 2010, 24, 92-94.	0.0	0

#	Article	IF	CITATIONS
145	Cellular and Molecular Biological Assessments of Inflammation and Autoimmunity After Spinal Cord Injury. Springer Protocols, 2012, , 553-571.	0.3	0
146	Spinal cord injury and the gut microbiota. , 2022, , 435-444.		0