Collin A Eagles-Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7817355/publications.pdf Version: 2024-02-01

		126858	143943
110	4,117	33	57
papers	citations	h-index	g-index
123	123	123	3428
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio, 2018, 47, 170-197.	2.8	244
2	Avian mercury exposure and toxicological risk across western North America: A synthesis. Science of the Total Environment, 2016, 568, 749-769.	3.9	213
3	Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Science of the Total Environment, 2019, 696, 133792.	3.9	184
4	Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada. Science of the Total Environment, 2016, 568, 1171-1184.	3.9	125
5	Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Science of the Total Environment, 2016, 568, 1213-1226.	3.9	116
6	The persistent problem of lead poisoning in birds from ammunition and fishing tackle. Condor, 2014, 116, 408-428.	0.7	113
7	Mercury demethylation in waterbird livers: Dose–response thresholds and differences among species. Environmental Toxicology and Chemistry, 2009, 28, 568-577.	2.2	112
8	Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA. Environmental Toxicology and Chemistry, 2008, 27, 2136-2153.	2.2	108
9	Bird Mercury Concentrations Change Rapidly as Chicks Age: Toxicological Risk is Highest at Hatching and Fledging. Environmental Science & amp; Technology, 2011, 45, 5418-5425.	4.6	99
10	Methylmercury exposure in wildlife: A review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. Science of the Total Environment, 2020, 711, 135117.	3.9	96
11	A Critical Time for Mercury Science to Inform Global Policy. Environmental Science & Technology, 2018, 52, 9556-9561.	4.6	90
12	Mercury cycling in agricultural and managed wetlands: A synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study. Science of the Total Environment, 2014, 484, 221-231.	3.9	85
13	Maternal transfer of contaminants in birds: Mercury and selenium concentrations in parents and their eggs. Environmental Pollution, 2016, 210, 145-154.	3.7	85
14	Songbirds as sentinels of mercury in terrestrial habitats of eastern North America. Ecotoxicology, 2015, 24, 453-467.	1.1	84
15	Mercury bioaccumulation and risk to three waterbird foraging guilds is influenced by foraging ecology and breeding stage. Environmental Pollution, 2009, 157, 1993-2002.	3.7	79
16	MERCURY CONCENTRATIONS IN BLOOD AND FEATHERS OF PREBREEDING FORSTER'S TERNS IN RELATION TO SPACE USE OF SAN FRANCISCO BAY, CALIFORNIA, USA, HABITATS. Environmental Toxicology and Chemistry, 2008, 27, 897.	2.2	73
17	Mercury concentrations and space use of pre-breeding American avocets and black-necked stilts in San Francisco Bay. Science of the Total Environment, 2007, 384, 452-466.	3.9	71
18	MERCURY TROPHIC TRANSFER IN A EUTROPHIC LAKE: THE IMPORTANCE OF HABITAT‧PECIFIC FORAGING. Ecological Applications, 2008, 18, A196-212.	1.8	71

#	Article	IF	CITATIONS
19	Genetic Applications in Avian Conservation. Auk, 2011, 128, 205-229.	0.7	68
20	Vocal Activity as a Low Cost and Scalable Index of Seabird Colony Size. Conservation Biology, 2014, 28, 1100-1108.	2.4	61
21	Demethylation of Methylmercury in Bird, Fish, and Earthworm. Environmental Science & Technology, 2021, 55, 1527-1534.	4.6	61
22	Does mercury contamination reduce body condition of endangered California clapper rails?. Environmental Pollution, 2012, 162, 439-448.	3.7	53
23	Spatiotemporal patterns of mercury accumulation in lake sediments of western North America. Science of the Total Environment, 2016, 568, 1157-1170.	3.9	53
24	CHANGES IN FISH DIETS AND FOOD WEB MERCURY BIOACCUMULATION INDUCED BY AN INVASIVE PLANKTIVOROUS FISH. , 2008, 18, A213-A226.		52
25	Agricultural Wetlands as Potential Hotspots for Mercury Bioaccumulation: Experimental Evidence Using Caged Fish. Environmental Science & Technology, 2010, 44, 1451-1457.	4.6	52
26	Mercury bioaccumulation in estuarine wetland fishes: Evaluating habitats and risk to coastal wildlife. Environmental Pollution, 2014, 193, 147-155.	3.7	47
27	Reservoirs and water management influence fish mercury concentrations in the western United States and Canada. Science of the Total Environment, 2016, 568, 739-748.	3.9	47
28	Oxidative stress response of Forster's terns (<i>Sterna forsteri</i>) and Caspian terns (<i>Hydroprogne caspia</i>) to mercury and selenium bioaccumulation in liver, kidney, and brain. Environmental Toxicology and Chemistry, 2011, 30, 920-929.	2.2	46
29	Mercury contamination and effects on survival of American avocet and black-necked stilt chicks in San Francisco Bay. Ecotoxicology, 2008, 17, 103-116.	1.1	45
30	Integrating Toxicity Risk in Bird Eggs and Chicks: Using Chick Down Feathers To Estimate Mercury Concentrations in Eggs. Environmental Science & amp; Technology, 2009, 43, 2166-2172.	4.6	41
31	Mercury and methylmercury in aquatic sediment across western North America. Science of the Total Environment, 2016, 568, 727-738.	3.9	39
32	Characterizing Golden Eagle Risk to Lead and Anticoagulant Rodenticide Exposure: A Review. Journal of Raptor Research, 2017, 51, 273-292.	0.2	39
33	Evidence for local specialization in a generalist mammalian herbivore, Neotoma fuscipes. Oikos, 2006, 113, 440-448.	1.2	38
34	Rapid Changes in Small Fish Mercury Concentrations in Estuarine Wetlands: Implications for Wildlife Risk and Monitoring Programs. Environmental Science & Technology, 2009, 43, 8658-8664.	4.6	38
35	Do Two Wrongs Make a Right? Persistent Uncertainties Regarding Environmental Selenium–Mercury Interactions. Environmental Science & Technology, 2020, 54, 9228-9234.	4.6	37
36	Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables. Science of the Total Environment, 2016, 568, 651-665.	3.9	36

#	Article	IF	CITATIONS
37	Accuracy of Egg Flotation Throughout Incubation to Determine Embryo Age and Incubation Day in Waterbird Nests. Condor, 2010, 112, 438-446.	0.7	34
38	Mercury risk to avian piscivores across western United States and Canada. Science of the Total Environment, 2016, 568, 685-696.	3.9	33
39	Synthesis of Maternal Transfer of Mercury in Birds: Implications for Altered Toxicity Risk. Environmental Science & Technology, 2020, 54, 2878-2891.	4.6	32
40	Embryo malposition as a potential mechanism for mercuryâ€induced hatching failure in bird eggs. Environmental Toxicology and Chemistry, 2010, 29, 1788-1794.	2.2	30
41	Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes. Environmental Pollution, 2016, 212, 279-289.	3.7	29
42	Ground Squirrel Shooting and Potential Lead Exposure in Breeding Avian Scavengers. PLoS ONE, 2016, 11, e0167926.	1.1	29
43	IS CLEAR LAKE METHYLMERCURY DISTRIBUTION DECOUPLED FROM BULK MERCURY LOADING. , 2008, 18, A107-A127.		28
44	Invertebrate mercury bioaccumulation in permanent, seasonal, and flooded rice wetlands within California's Central Valley. Science of the Total Environment, 2010, 408, 666-671.	3.9	28
45	Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources. Science of the Total Environment, 2016, 568, 638-650.	3.9	28
46	Mercury contamination and stable isotopes reveal variability in foraging ecology of generalist California gulls. Ecological Indicators, 2017, 74, 205-215.	2.6	28
47	THE LEGACY OF MERCURY CYCLING FROM MINING SOURCES IN AN AQUATIC ECOSYSTEM: FROM ORE TO ORGANISM. , 2008, 18, A12-A28.		27
48	Mercury Exposure Associated with Altered Plasma Thyroid Hormones in the Declining Western Pond Turtle (<i>Emys marmorata</i>) from California Mountain Streams. Environmental Science & Technology, 2014, 48, 2989-2996.	4.6	27
49	Assessing potential health risks to fish and humans using mercury concentrations in inland fish from across western Canada and the United States. Science of the Total Environment, 2016, 571, 342-354.	3.9	27
50	A National-Scale Assessment of Mercury Bioaccumulation in United States National Parks Using Dragonfly Larvae As Biosentinels through a Citizen-Science Framework. Environmental Science & Technology, 2020, 54, 8779-8790.	4.6	27
51	Sexing California Gulls Using Morphometrics and Discriminant Function Analysis. Waterbirds, 2010, 33, 79-85.	0.2	26
52	Eggâ€laying sequence influences egg mercury concentrations and egg size in three bird species: Implications for contaminant monitoring programs. Environmental Toxicology and Chemistry, 2016, 35, 1458-1469.	2.2	26
53	MINE-DERIVED MERCURY: EFFECTS ON LOWER TROPHIC SPECIES IN CLEAR LAKE, CALIFORNIA. , 2008, 18, A158-A176.		25
54	MERCURY RESIDUES AND PRODUCTIVITY IN OSPREY AND GREBES FROM A MINE-DOMINATED ECOSYSTEM. , 2008, 18, A227-A238.		25

#	Article	IF	CITATIONS
55	ANTHROPOGENIC STRESSORS AND CHANGES IN THE CLEAR LAKE ECOSYSTEM AS RECORDED IN SEDIMENT CORES. , 2008, 18, A257-A283.		23
56	SPATIOTEMPORAL TRENDS IN FISH MERCURY FROM A MINE-DOMINATED ECOSYSTEM: CLEAR LAKE, CALIFORNIA. , 2008, 18, A177-A195.		23
57	Selenium: Mercury Molar Ratios in Freshwater Fish in the Columbia River Basin: Potential Applications for Specific Fish Consumption Advisories. Biological Trace Element Research, 2017, 178, 136-146.	1.9	23
58	Survival of postfledging Forster's terns in relation to mercury exposure in San Francisco Bay. Ecotoxicology, 2008, 17, 789-801.	1.1	22
59	Mercury Bioaccumulation in Estuarine Fishes: Novel Insights from Sulfur Stable Isotopes. Environmental Science & Technology, 2017, 51, 2131-2139.	4.6	21
60	Mercury and lead exposure in avian scavengers from the Pacific Northwest suggest risks to California condors: Implications for reintroduction and recovery. Environmental Pollution, 2018, 243, 610-619.	3.7	21
61	Songbird feathers as indicators of mercury exposure: high variability and low predictive power suggest limitations. Ecotoxicology, 2020, 29, 1281-1292.	1.1	21
62	MERCURY IN ABIOTIC MATRICES OF CLEAR LAKE, CALIFORNIA: HUMAN HEALTH AND ECOTOXICOLOGICAL IMPLICATIONS. , 2008, 18, A128-A157.		20
63	Hg concentrations in fish from coastal waters of California and Western North America. Science of the Total Environment, 2016, 568, 1146-1156.	3.9	20
64	Anticoagulant rodenticides in Strix owls indicate widespread exposure in west coast forests. Biological Conservation, 2019, 238, 108238.	1.9	20
65	Estimating Mercury Exposure of Piscivorous Birds and Sport Fish Using Prey Fish Monitoring. Environmental Science & Technology, 2015, 49, 13596-13604.	4.6	19
66	SELENIUM BIOACCUMULATION AND BODY CONDITION IN SHOREBIRDS AND TERNS BREEDING IN SAN FRANCISCO BAY, CALIFORNIA, USA. Environmental Toxicology and Chemistry, 2009, 28, 2134.	2.2	18
67	Stream Mercury Export in Response to Contemporary Timber Harvesting Methods (Pacific Coastal) Tj ETQq1 1 C	.784314 r 4.6	gBT/Overloci
68	lsotope Fractionation from <i>In Vivo</i> Methylmercury Detoxification in Waterbirds. ACS Earth and Space Chemistry, 2021, 5, 990-997.	1.2	18
69	A NONLETHAL MICROSAMPLING TECHNIQUE TO MONITOR THE EFFECTS OF MERCURY ON WILD BIRD EGGS. Environmental Toxicology and Chemistry, 2009, 28, 465.	2.2	16
70	Unintended Consequences of Management Actions in Salt Pond Restoration: Cascading Effects in Trophic Interactions. PLoS ONE, 2015, 10, e0119345.	1.1	15
71	Landscape factors and hydrology influence mercury concentrations in wading birds breeding in the Florida Everglades, USA. Science of the Total Environment, 2013, 458-460, 637-646.	3.9	14
72	Correlates of immune defenses in golden eagle nestlings. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327, 243-253.	0.9	14

#	Article	IF	CITATIONS
73	Differential reliance on aquatic prey subsidies influences mercury exposure in riparian arachnids and songbirds. Ecology and Evolution, 2021, 11, 7003-7017.	0.8	14
74	From tails to toes: developing nonlethal tissue indicators of mercury exposure in five amphibian species. Ecotoxicology, 2016, 25, 574-583.	1.1	13
75	Timber harvest alters mercury bioaccumulation and food web structure in headwater streams. Environmental Pollution, 2019, 253, 636-645.	3.7	13
76	Examining historical mercury sources in the Saint Louis River estuary: How legacy contamination influences biological mercury levels in Great Lakes coastal regions. Science of the Total Environment, 2021, 779, 146284.	3.9	13
77	Identifying Nest Predators of American Avocets (Recurvirostra americana) and Black-Necked Stilts (Himantopus mexicanus) in San Francisco Bay, California. Southwestern Naturalist, 2011, 56, 35-43.	0.1	12
78	A critical evaluation of the utility of eggshells for estimating mercury concentrations in avian eggs. Environmental Toxicology and Chemistry, 2017, 36, 2417-2427.	2.2	12
79	Bioenergetics Models to Estimate Numbers of Larval Lampreys Consumed by Smallmouth Bass in Elk Creek, Oregon. North American Journal of Fisheries Management, 2017, 37, 714-723.	0.5	12
80	The lead (Pb) lining of agricultureâ€related subsidies: enhanced Golden Eagle growth rates tempered by Pb exposure. Ecosphere, 2020, 11, e03006.	1.0	12
81	Invasive crayfish as vectors of mercury in freshwater food webs of the Pacific Northwest. Environmental Toxicology and Chemistry, 2014, 33, 2639-2645.	2.2	11
82	Mercury exposure may influence fluctuating asymmetry in waterbirds. Environmental Toxicology and Chemistry, 2017, 36, 1599-1605.	2.2	11
83	Mercury and selenium concentrations in fishes of the Upper Colorado River Basin, southwestern United States: A retrospective assessment. PLoS ONE, 2020, 15, e0226824.	1.1	11
84	Gender Identification Of Caspian Terns Using External Morphology And Discriminant Function Analysis. Wilson Journal of Ornithology, 2008, 120, 378-383.	0.1	10
85	Season, molt, and body size influence mercury concentrations in grebes. Environmental Pollution, 2017, 229, 29-39.	3.7	10
86	Critically assessing the utility of portable lead analyzers for wildlife conservation. Wildlife Society Bulletin, 2018, 42, 284-294.	1.6	10
87	A Mass Balance Mercury Budget for a Mine-Dominated Lake: Clear Lake, California. Water, Air, and Soil Pollution, 2009, 196, 51-73.	1.1	9
88	Physiological Condition of Juvenile Wading Birds in Relation to Multiple Landscape Stressors in the Florida Everglades: Effects of Hydrology, Prey Availability, and Mercury Bioaccumulation. PLoS ONE, 2014, 9, e106447.	1.1	9
89	Differentiating Sex and Species of Western Grebes (<i>Aechmophorus occidentalis</i>) and Clark's Grebes (<i>Aechmophorus clarkii</i>) and Their Eggs Using External Morphometrics and Discriminant Function Analysis. Waterbirds, 2016, 39, 13-26.	0.2	9
90	lt's what's inside that counts: egg contaminant concentrations are influenced by estimates of egg density, egg volume, and fresh egg mass. Ecotoxicology, 2016, 25, 770-776.	1.1	9

#	Article	IF	CITATIONS
91	Managing the trifecta of disease, climate, and contaminants: Searching for robust choices under multiple sources of uncertainty. Biological Conservation, 2019, 236, 153-161.	1.9	9
92	Mercury bioaccumulation in freshwater fishes of the Chesapeake Bay watershed. Ecotoxicology, 2020, 29, 459-484.	1.1	9
93	Nutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplankton. Science of the Total Environment, 2019, 667, 601-612.	3.9	8
94	Spatial variation in aquatic invertebrate and riparian songbird mercury exposure across a river-reservoir system with a legacy of mercury contamination. Ecotoxicology, 2020, 29, 1195-1204.	1.1	8
95	Long-Term Trends in Regional Wet Mercury Deposition and Lacustrine Mercury Concentrations in Four Lakes in Voyageurs National Park. Applied Sciences (Switzerland), 2021, 11, 1879.	1.3	8
96	Temporal Variation in Fish Mercury Concentrations within Lakes from the Western Aleutian Archipelago, Alaska. PLoS ONE, 2014, 9, e102244.	1.1	7
97	Metal accumulation varies with life history, size, and development of larval amphibians. Environmental Pollution, 2021, 287, 117638.	3.7	7
98	Organochlorine and PBDE Concentrations in Relation to Cytochrome P450 Activity in Livers of Forster's Terns (Sterna forsteri) and Caspian Terns (Hydroprogne caspia), in San Francisco Bay, California. Archives of Environmental Contamination and Toxicology, 2010, 58, 863-873.	2.1	6
99	From forests to fish: Mercury in mountain lake food webs influenced by factors at multiple scales. Limnology and Oceanography, 2021, 66, 1021-1035.	1.6	6
100	Mercury concentrations in breast feathers of three upper trophic level marine predators from the western Aleutian Islands, Alaska. Marine Pollution Bulletin, 2014, 82, 189-193.	2.3	5
101	Wetland Management Strategy to Reduce Mercury in Water and Bioaccumulation in Fish. Environmental Toxicology and Chemistry, 2019, 38, 2178-2196.	2.2	5
102	Using Carbon, Nitrogen, and Mercury Isotope Values to Distinguish Mercury Sources to Alaskan Lake Trout. Environmental Science and Technology Letters, 2022, 9, 312-319.	3.9	5
103	Surface-air mercury fluxes and a watershed mass balance in forested and harvested catchments. Environmental Pollution, 2021, 277, 116869.	3.7	4
104	Lethal impacts of selenium counterbalance the potential reduction in mercury bioaccumulation for freshwater organisms. Environmental Pollution, 2021, 287, 117293.	3.7	4
105	Mercury concentrations in multiple tissues of Kittlitz's murrelets (Brachyramphus brevirostris). Marine Pollution Bulletin, 2018, 129, 675-680.	2.3	2
106	Contaminant Concentrations in Sediments, Aquatic Invertebrates, and Fish in Proximity to Rail Tracks Used for Coal Transport in the Pacific Northwest (USA): A Baseline Assessment. Archives of Environmental Contamination and Toxicology, 2019, 77, 549-574.	2.1	2
107	Prey fish returned to Forster's tern colonies suggest spatial and temporal differences in fish composition and availability. PLoS ONE, 2018, 13, e0193430.	1.1	2
108	Small-Mammal Shooting as a Conduit for Lead Exposure in Avian Scavengers. Environmental Science & Technology, 2021, 55, 12272-12280.	4.6	1

#	Article	IF	CITATIONS
109	Mercury exposure of tidal marsh songbirds in the northeastern United States and its association with nest survival. Ecotoxicology, 2022, 31, 208-220.	1.1	1
110	MERCURY CONCENTRATIONS IN BLOOD AND FEATHERS OF PRE-BREEDING FORSTER'S TERNS IN RELATION TO SPACE USE OF SAN FRANCISCO BAY, CALIFORNIA, USA, HABITATS. Environmental Toxicology and Chemistry, 2007, preprint, 1.	2.2	0