Jorge Quereda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7817354/publications.pdf Version: 2024-02-01

LODCE OLIEDEDA

#	Article	IF	CITATIONS
1	Enhanced superconductivity in atomically thin TaS2. Nature Communications, 2016, 7, 11043.	5.8	285
2	Strong Modulation of Optical Properties in Black Phosphorus through Strain-Engineered Rippling. Nano Letters, 2016, 16, 2931-2937.	4.5	199
3	Spatially resolved optical absorption spectroscopy of single- and few-layer MoS ₂ by hyperspectral imaging. Nanotechnology, 2016, 27, 115705.	1.3	145
4	Strong Quantum Confinement Effect in the Optical Properties of Ultrathin αâ€In ₂ Se ₃ . Advanced Optical Materials, 2016, 4, 1939-1943.	3.6	89
5	Single-layer MoS2 roughness and sliding friction quenching by interaction with atomically flat substrates. Applied Physics Letters, 2014, 105, .	1.5	64
6	Fast and reliable identification of atomically thin layers of TaSe2 crystals. Nano Research, 2013, 6, 191-199.	5.8	62
7	Strain engineering of Schottky barriers in single- and few-layer MoS ₂ vertical devices. 2D Materials, 2017, 4, 021006.	2.0	54
8	Symmetry regimes for circular photocurrents in monolayer MoSe2. Nature Communications, 2018, 9, 3346.	5.8	53
9	Enhanced Visibility of MoS2, MoSe2, WSe2 and Black-Phosphorus: Making Optical Identification of 2D Semiconductors Easier. Electronics (Switzerland), 2015, 4, 847-856.	1.8	44
10	Observation of bright and dark exciton transitions in monolayer MoSe ₂ by photocurrent spectroscopy. 2D Materials, 2018, 5, 015004.	2.0	21
11	Bilayer h-BN barriers for tunneling contacts in fully-encapsulated monolayer MoSe ₂ field-effect transistors. 2D Materials, 2019, 6, 015002.	2.0	21
12	Scalable and low-cost fabrication of flexible WS2 photodetectors on polycarbonate. Npj Flexible Electronics, 2022, 6, .	5.1	21
13	Excitons, trions and Rydberg states in monolayer MoS2 revealed by low-temperature photocurrent spectroscopy. Communications Physics, 2020, 3, .	2.0	19
14	Fast response photogating in monolayer MoS ₂ phototransistors. Nanoscale, 2021, 13, 16156-16163.	2.8	13
15	Semiconductor channel-mediated photodoping in h-BN encapsulated monolayer MoSe ₂ phototransistors. 2D Materials, 2019, 6, 025040.	2.0	12
16	Calibrating the frequency of tuning forks by means of Lissajous figures. American Journal of Physics, 2011, 79, 517-520.	0.3	10
17	The role of device asymmetries and Schottky barriers on the helicity-dependent photoresponse of 2D phototransistors. Npj 2D Materials and Applications, 2021, 5, .	3.9	8
18	Stretching ReS2 along different crystal directions: Anisotropic tuning of the vibrational and optical responses. Applied Physics Letters, 2022, 120, .	1.5	6

Jorge Quereda

#	Article	IF	CITATIONS
19	Ionic-Liquid Gating in Two-Dimensional TMDs: The Operation Principles and Spectroscopic Capabilities. Micromachines, 2021, 12, 1576.	1.4	5
20	The Low-Temperature Photocurrent Spectrum of Monolayer MoSe2: Excitonic Features and Gate Voltage Dependence. Nanomaterials, 2022, 12, 322.	1.9	4
21	Fiber-coupled light-emitting diodes (LEDs) as safe and convenient light sources for the characterization of optoelectronic devices. Open Research Europe, 0, 1, 98.	2.0	2
22	Mechanical Properties and Electric Field Screening of Atomically Thin MoS2 Crystals. Lecture Notes in Nanoscale Science and Technology, 2014, , 129-153.	0.4	0
23	Fiber-coupled light-emitting diodes (LEDs) as safe and convenient light sources for the characterization of optoelectronic devices. Open Research Europe, 0, 1, 98.	2.0	0