
## Laszlo Patthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7817125/publications.pdf Version: 2024-02-01



Ι ΛΟΖΙΟ ΡΛΤΤΗΥ

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell, 1985, 41, 657-663.                                                               | 28.9 | 518       |
| 2  | Genome evolution and the evolution of exon-shuffling $\hat{a} \in$ " a review. Gene, 1999, 238, 103-114.                                                                          | 2.2  | 388       |
| 3  | Intron-dependent evolution: Preferred types of exons and introns. FEBS Letters, 1987, 214, 1-7.                                                                                   | 2.8  | 303       |
| 4  | Common evolutionary origin of the fibrin-binding structures of fibronectin and tissue-type plasminogen activator. FEBS Letters, 1983, 163, 37-41.                                 | 2.8  | 235       |
| 5  | The implications of alternative splicing in the ENCODE protein complement. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5495-5500. | 7.1  | 206       |
| 6  | Modular exchange principles in proteins. Current Opinion in Structural Biology, 1991, 1, 351-361.                                                                                 | 5.7  | 177       |
| 7  | Detecting homology of distantly related proteins with consensus sequences. Journal of Molecular<br>Biology, 1987, 198, 567-577.                                                   | 4.2  | 152       |
| 8  | Modular Assembly of Genes and the Evolution of New Functions. Genetica, 2003, 118, 217-231.                                                                                       | 1.1  | 148       |
| 9  | A deletion in the myostatin gene causes the compact ( Cmpt ) hypermuscular mutation in mice.<br>Mammalian Genome, 1998, 9, 671-671.                                               | 2.2  | 147       |
| 10 | Modules, multidomain proteins and organismic complexity. FEBS Journal, 2005, 272, 5064-5078.                                                                                      | 4.7  | 108       |
| 11 | Exon shuffling and other ways of module exchange. Matrix Biology, 1996, 15, 301-310.                                                                                              | 3.6  | 97        |
| 12 | Introns and exons. Current Opinion in Structural Biology, 1994, 4, 383-392.                                                                                                       | 5.7  | 87        |
| 13 | Refined solution structure and ligand-binding properties of PDC-109 domain b. Journal of Molecular<br>Biology, 1992, 223, 281-298.                                                | 4.2  | 83        |
| 14 | The LCCL module. FEBS Journal, 2000, 267, 5751-5757.                                                                                                                              | 0.2  | 83        |
| 15 | Identifying protein-coding genes in genomic sequences. Genome Biology, 2009, 10, 201.                                                                                             | 9.6  | 82        |
| 16 | Evidence for the involvement of type II domains in collagen binding by 72 kDa type IV procollagenase.<br>FEBS Letters, 1991, 282, 23-25.                                          | 2.8  | 72        |
| 17 | Exons - original building blocks of proteins?. BioEssays, 1991, 13, 187-192.                                                                                                      | 2.5  | 71        |
| 18 | Modular assembly of genes and the evolution of new functions. Genetica, 2003, 118, 217-31.                                                                                        | 1.1  | 71        |

Laszlo Patthy

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Both WFIKKN1 and WFIKKN2 Have High Affinity for Growth and Differentiation Factors 8 and 11.<br>Journal of Biological Chemistry, 2008, 283, 23677-23684.                                                                                                | 3.4 | 67        |
| 20 | The collagen-binding site of type-II units of bovine seminal fluid protein PDC-109 and fibronectin. FEBS<br>Journal, 1990, 193, 801-806.                                                                                                                | 0.2 | 56        |
| 21 | Gelatin-binding Region of Human Matrix Metalloproteinase-2. Journal of Biological Chemistry, 2001,<br>276, 27613-27621.                                                                                                                                 | 3.4 | 56        |
| 22 | Identification and correction of abnormal, incomplete and mispredicted proteins in public databases.<br>BMC Bioinformatics, 2008, 9, 353.                                                                                                               | 2.6 | 55        |
| 23 | The second type II module from human matrix metalloproteinase 2: structure, function and dynamics.<br>Structure, 1999, 7, 1235-S2.                                                                                                                      | 3.3 | 50        |
| 24 | Sequence-specific proton NMR assignments and structural characterization of bovine seminal fluid protein PDC-109 domain b. Biochemistry, 1991, 30, 1663-1672.                                                                                           | 2.5 | 42        |
| 25 | NMR Structure of the WIF Domain of the Human Wnt-Inhibitory Factor-1. Journal of Molecular<br>Biology, 2006, 357, 942-950.                                                                                                                              | 4.2 | 42        |
| 26 | Analysis and identification of aromatic signals in the proton magnetic resonance spectrum of the kringle 4 fragment from human plasminogen. Biochemistry, 1985, 24, 748-753.                                                                            | 2.5 | 41        |
| 27 | WFIKKN1 and WFIKKN2 bind growth factors TGF <b>β</b> 1, BMP2 and BMP4 but do not inhibit their signalling activity. FEBS Journal, 2010, 277, 5040-5050.                                                                                                 | 4.7 | 39        |
| 28 | Peptide Ligands for the Fibronectin Type II Modules of Matrix Metalloproteinase 2 (MMP-2). Journal of<br>Biological Chemistry, 2003, 278, 12241-12246.                                                                                                  | 3.4 | 37        |
| 29 | Distinct Expression Pattern of Two Related Human Proteins Containing Multiple Types of<br>Protease-Inhibitory Modules. Biological Chemistry, 2002, 383, 223-8.                                                                                          | 2.5 | 35        |
| 30 | K153R polymorphism in myostatin gene increases the rate of promyostatin activation by furin. FEBS<br>Letters, 2015, 589, 295-301.                                                                                                                       | 2.8 | 34        |
| 31 | Modular Autonomy, Ligand Specificity, and Functional Cooperativity of the Three In-tandem<br>Fibronectin Type II Repeats from Human Matrix Metalloproteinase 2. Journal of Biological Chemistry,<br>2004, 279, 46921-46929.                             | 3.4 | 30        |
| 32 | Latent myostatin has significant activity and this activity is controlled more efficiently by WFIKKN 1 than by WFIKKN 2. FEBS Journal, 2013, 280, 3822-3839.                                                                                            | 4.7 | 30        |
| 33 | Chemical modification and nuclear magnetic resonance studies on human plasminogen kringle 4.<br>Assignment of tyrosine and histidine resonances to specific residues in the sequence. FEBS Journal,<br>1985, 152, 439-446.                              | 0.2 | 24        |
| 34 | The aromatic 1H-NMR spectrum of plasminogen kringle 4. A comparative study of human, porcine and bovine homologs. FEBS Journal, 1986, 159, 581-595.                                                                                                     | 0.2 | 24        |
| 35 | The Col-1 Module of Human Matrix Metalloproteinase-2 (MMP-2): Structural/Functional Relatedness<br>between Gelatin-Binding Fibronectin Type II Modules and Lysine-Binding Kringle Domains. Biological<br>Chemistry, 2002, 383, 137-48.                  | 2.5 | 24        |
| 36 | Origin of fibronectin type II (FN2) modules: Structural analyses of distantly-related members of the kringle family idey the kringle domain of neurotrypsin as a potential link between FN2 domains and kringles. Protein Science, 2001, 10, 2114-2122. | 7.6 | 23        |

LASZLO PATTHY

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Insertion of spliceosomal introns in proto-splice sites: the case of secretory signal peptides. FEBS<br>Letters, 2004, 575, 109-111.                                          | 2.8 | 22        |
| 38 | Expression, purification and characterization of the second Kunitz-type protease inhibitor domain of the human WFIKKN protein. FEBS Journal, 2003, 270, 2101-2107.            | 0.2 | 20        |
| 39 | Reassessing Domain Architecture Evolution of Metazoan Proteins: Major Impact of Gene Prediction Errors. Genes, 2011, 2, 449-501.                                              | 2.4 | 20        |
| 40 | Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors. Scientific Reports, 2016, 6, 30700.               | 3.3 | 20        |
| 41 | Reassessing Domain Architecture Evolution of Metazoan Proteins: The Contribution of Different<br>Evolutionary Mechanisms. Genes, 2011, 2, 578-598.                            | 2.4 | 18        |
| 42 | Both LCCL-domains of human CRISPLD2 have high affinity for lipid A. Biochimie, 2014, 97, 66-71.                                                                               | 2.6 | 18        |
| 43 | Biological functions of the WAP domain-containing multidomain proteins WFIKKN1 and WFIKKN2.<br>Biochemical Society Transactions, 2011, 39, 1416-1420.                         | 3.4 | 17        |
| 44 | Characterization of a Wntâ€binding site of the WIFâ€domain of Wnt inhibitory factorâ€1. FEBS Letters, 2012,<br>586, 3122-3126.                                                | 2.8 | 17        |
| 45 | MisPred: a resource for identification of erroneous protein sequences in public databases. Database:<br>the Journal of Biological Databases and Curation, 2013, 2013, bat053. | 3.0 | 17        |
| 46 | Analysis of the aliphatic 1H-NMR spectrum of plasminogen kringle 4. A comparative study of human,<br>porcine, bovine and chicken homologs. FEBS Journal, 1988, 170, 549-563.  | 0.2 | 15        |
| 47 | Wnts grasp the WIF domain of Wnt Inhibitory Factor 1 at two distinct binding sites. FEBS Letters, 2015, 589, 3044-3051.                                                       | 2.8 | 15        |
| 48 | Structure, function and disease relevance of Wnt inhibitory factor 1, a secreted protein controlling the Wnt and hedgehog pathways. Growth Factors, 2019, 37, 29-52.          | 1.7 | 15        |
| 49 | Reassessing Domain Architecture Evolution of Metazoan Proteins: Major Impact of Errors Caused by<br>Confusing Paralogs and Epaktologs. Genes, 2011, 2, 516-561.               | 2.4 | 12        |
| 50 | Use of signals of positive and negative selection to distinguish cancer genes and passenger genes.<br>ELife, 2021, 10, .                                                      | 6.0 | 12        |
| 51 | Exon skipping-rich transcriptomes of animals reflect the significance of exon-shuffling in metazoan proteome evolution. Biology Direct, 2019, 14, 2.                          | 4.6 | 11        |
| 52 | NMR Solution Structure of the Neurotrypsin Kringle Domain. Biochemistry, 2008, 47, 12290-12298.                                                                               | 2.5 | 10        |
| 53 | FixPred: a resource for correction of erroneous protein sequences. Database: the Journal of<br>Biological Databases and Curation, 2014, 2014, bau032.                         | 3.0 | 9         |
| 54 | Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular<br>Body Plan of Metazoa. Genes, 2021, 12, 382.                            | 2.4 | 6         |

Laszlo Patthy

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Wnt Inhibitory Factor 1 Binds to and Inhibits the Activity of Sonic Hedgehog. Cells, 2021, 10, 3496.                                                              | 4.1 | 6         |
| 56 | Morphological Stasis and Proteome Innovation in Cephalochordates. Genes, 2018, 9, 353.                                                                            | 2.4 | 3         |
| 57 | Influence of <scp>WFIKKN</scp> 1 on <scp>BMP</scp> 1â€mediated activation of latent myostatin. FEBS<br>Journal, 2016, 283, 4515-4527.                             | 4.7 | 2         |
| 58 | Identification and Correction of Erroneous Protein Sequences in Public Databases. Methods in<br>Molecular Biology, 2016, 1415, 179-192.                           | 0.9 | 1         |
| 59 | Fold class and evolutionary mobility of protein modules. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22652-22652. | 7.1 | 1         |
| 60 | Use of Publication Dynamics to Distinguish Cancer Genes and Bystander Genes. Genes, 2022, 13, 1105.                                                               | 2.4 | 1         |
| 61 | Miguel LlinÃ;s and the Structure of the Kringle Fold. Protein Journal, 2021, 40, 450-453.                                                                         | 1.6 | 0         |