## Huang Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7816803/publications.pdf Version: 2024-02-01



Ημανίς Υμαν

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Assessment of mechanical properties and fatigue performance of a selective laser melted nickel-base<br>superalloy Inconel 718. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2019, 759, 278-287. | 2.6 | 117       |
| 2  | Quantification of constraint effects in elastic-plastic crack front fields. Journal of the Mechanics and Physics of Solids, 1998, 46, 219-241.                                                                                                            | 2.3 | 98        |
| 3  | Suggestions to the cohesive traction–separation law from atomistic simulations. Engineering<br>Fracture Mechanics, 2011, 78, 525-533.                                                                                                                     | 2.0 | 76        |
| 4  | Identification of the intrinsic material length in gradient plasticity theory from micro-indentation tests. International Journal of Solids and Structures, 2001, 38, 8171-8187.                                                                          | 1.3 | 67        |
| 5  | A review of the extended finite element method on macrocrack and microcrack growth simulations.<br>Theoretical and Applied Fracture Mechanics, 2018, 97, 236-249.                                                                                         | 2.1 | 67        |
| 6  | Verification of a Cohesive Zone Model for Ductile Fracture. Journal of Engineering Materials and Technology, Transactions of the ASME, 1996, 118, 192-200.                                                                                                | 0.8 | 63        |
| 7  | Life assessment of multiaxial thermomechanical fatigue of a nickel-based superalloy Inconel 718.<br>International Journal of Fatigue, 2019, 120, 228-240.                                                                                                 | 2.8 | 58        |
| 8  | A continuum damage model for multi-axial low cycle fatigue of porous sintered metals based on the critical plane concept. Mechanics of Materials, 2017, 104, 13-25.                                                                                       | 1.7 | 57        |
| 9  | Computational analysis of mixed-mode fatigue crack growth in quasi-brittle materials using extended finite element methods. Engineering Fracture Mechanics, 2009, 76, 165-181.                                                                            | 2.0 | 52        |
| 10 | On damage accumulations in the cyclic cohesive zone model for XFEM analysis of mixed-mode fatigue crack growth. Computational Materials Science, 2009, 46, 579-585.                                                                                       | 1.4 | 51        |
| 11 | Multiaxial fatigue life assessment of sintered porous iron under proportional and non-proportional<br>loadings. International Journal of Fatigue, 2017, 97, 214-226.                                                                                      | 2.8 | 47        |
| 12 | Cyclic plasticity modeling of nickel-based superalloy Inconel 718 under multi-axial thermo-mechanical fatigue loading conditions. International Journal of Fatigue, 2019, 119, 89-101.                                                                    | 2.8 | 47        |
| 13 | FEM mesh-dependence in cutting process simulations. International Journal of Advanced<br>Manufacturing Technology, 2011, 53, 313-323.                                                                                                                     | 1.5 | 46        |
| 14 | Applications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methods. Engineering Fracture Mechanics, 2011, 78, 544-558.                                                                 | 2.0 | 46        |
| 15 | Numerical investigations on the significance of for large stable crack growth. Engineering Fracture<br>Mechanics, 1989, 32, 459-468.                                                                                                                      | 2.0 | 45        |
| 16 | Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models.<br>Engineering Fracture Mechanics, 2014, 126, 1-11.                                                                                                    | 2.0 | 42        |
| 17 | Application of material point methods for cutting process simulations. Computational Materials Science, 2012, 57, 102-110.                                                                                                                                | 1.4 | 41        |
| 18 | Assessment of low cycle fatigue crack growth under mixed-mode loading conditions by using a cohesive zone model. International Journal of Fatigue, 2015, 75, 39-50.                                                                                       | 2.8 | 35        |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ratcheting and fatigue properties of the high-nitrogen steel X13CrMnMoN18-14-3 under cyclic loading.<br>Computational Materials Science, 2009, 46, 572-578.                                                                                                          | 1.4 | 32        |
| 20 | A damage evolution model based on micro-structural characteristics for an additive manufactured<br>superalloy under monotonic and cyclic loading conditions. International Journal of Fatigue, 2020, 131,<br>105279.                                                 | 2.8 | 32        |
| 21 | A micro-mechanical damage model based on gradient plasticity: algorithms and applications.<br>International Journal for Numerical Methods in Engineering, 2002, 54, 399-420.                                                                                         | 1.5 | 31        |
| 22 | Assessment of thermo-mechanical fatigue in a nickel-based single-crystal superalloy CMSX-4<br>accounting for temperature gradient effects. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2021, 809, 140918. | 2.6 | 29        |
| 23 | Prediction of residual stress relaxations in shot-peened specimens and its application for the rotor<br>disc assessment. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2010, 527, 6690-6698.                | 2.6 | 28        |
| 24 | Computational modeling of mixed-mode fatigue crack growth using extended finite element methods.<br>International Journal of Fracture, 2009, 159, 151-165.                                                                                                           | 1.1 | 27        |
| 25 | Mechanical behavior and fatigue performance of austenitic stainless steel under consideration of<br>martensitic phase transformation. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2017, 679, 249-257.     | 2.6 | 27        |
| 26 | Evolution and characterization of cyclic thermal shock-induced thermomechanical damage in oxide/oxide ceramics matrix composites. International Journal of Fatigue, 2019, 120, 150-161.                                                                              | 2.8 | 27        |
| 27 | Investigations of size effects in tensile tests based on a nonlocal micro-mechanical damage model.<br>Computational Materials Science, 2003, 26, 230-243.                                                                                                            | 1.4 | 26        |
| 28 | Elastoplastic crack analysis for pressure-sensitive dilatant materials ? Part I: Higher-order solutions and two-parameter characterization. International Journal of Fracture, 1993, 61, 295-330.                                                                    | 1.1 | 25        |
| 29 | Cohesive zone modelling of low cycle fatigue cracks in cracked and notched specimens. Fatigue and<br>Fracture of Engineering Materials and Structures, 2013, 36, 1246-1257.                                                                                          | 1.7 | 25        |
| 30 | On the J-integral concept for elastic-plastic crack extension. Nuclear Engineering and Design, 1991, 131, 157-173.                                                                                                                                                   | 0.8 | 24        |
| 31 | Computational analysis of thin coating layer failure using a cohesive model and gradient plasticity.<br>Engineering Fracture Mechanics, 2003, 70, 1929-1942.                                                                                                         | 2.0 | 24        |
| 32 | Damage evolution and modeling of sintered metals under multi-axial loading conditions.<br>Computational Materials Science, 2013, 80, 123-133.                                                                                                                        | 1.4 | 24        |
| 33 | Thermal gradient mechanical fatigue assessment of a nickel-based superalloy. International Journal of<br>Fatigue, 2020, 135, 105486.                                                                                                                                 | 2.8 | 24        |
| 34 | Analysis of size effects based on a symmetric lower-order gradient plasticity model. Computational<br>Materials Science, 2000, 19, 143-157.                                                                                                                          | 1.4 | 23        |
| 35 | Surface vs. interior failure behaviors in a structural steel under gigacycle fatigue: Failure analysis and life prediction. International Journal of Fatigue, 2014, 64, 42-53.                                                                                       | 2.8 | 23        |
| 36 | Prediction of fatigue crack growth and residual stress relaxations in shot-peened material. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010,<br>527, 5962-5968.                                          | 2.6 | 22        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Representation of micro-structural evolution and thermo-mechanical damage in thermal shocked oxide/oxide ceramic matrix composites. International Journal of Fatigue, 2019, 126, 122-129.                         | 2.8 | 22        |
| 38 | Correlations between microstructure evolution and mechanical behavior of a nickel-based single crystal superalloy with long-term aging effects. Materials Characterization, 2020, 169, 110652.                    | 1.9 | 22        |
| 39 | Analysis of elastoplastic sharp notches. International Journal of Fracture, 1994, 67, 187-216.                                                                                                                    | 1.1 | 20        |
| 40 | Micro-porosity as damage indicator for characterizing cyclic thermal shock-induced anisotropic<br>damage in oxide/oxide ceramic matrix composites. Engineering Fracture Mechanics, 2019, 220, 106669.             | 2.0 | 20        |
| 41 | Computational fracture mechanics assessment of adhesive joints. Computational Materials Science, 2008, 43, 146-156.                                                                                               | 1.4 | 19        |
| 42 | Fracture energy and tensile strength depending on stress triaxiality along a running crack front in three-dimensional cohesive modeling. Engineering Fracture Mechanics, 2020, 227, 106919.                       | 2.0 | 18        |
| 43 | Quantifications of crack constraint effects in an austenitic steel. International Journal of Fracture, 1995, 71, 273-291.                                                                                         | 1.1 | 17        |
| 44 | Experimental and computational investigation of cyclic mechanical behavior of sintered iron.<br>Computational Materials Science, 2012, 57, 48-58.                                                                 | 1.4 | 17        |
| 45 | Critical remarks to cohesive zone modeling for three-dimensional elastoplastic fatigue crack propagation. Engineering Fracture Mechanics, 2018, 202, 311-331.                                                     | 2.0 | 17        |
| 46 | Computational algorithms and applications of element-free Galerkin methods for nonlocal damage models. Engineering Fracture Mechanics, 2010, 77, 2640-2653.                                                       | 2.0 | 16        |
| 47 | The role of intrinsic material length scales in micro-indentation simulations. Computational Materials Science, 2002, 25, 253-263.                                                                                | 1.4 | 15        |
| 48 | Prediction of 3D small fatigue crack propagation in shot-peened specimens. Computational Materials<br>Science, 2009, 46, 566-571.                                                                                 | 1.4 | 15        |
| 49 | Damage evolution and characterization for sintered powder metals with the varying porosity.<br>Engineering Fracture Mechanics, 2019, 207, 86-98.                                                                  | 2.0 | 15        |
| 50 | Fatigue life assessment of a porous casting nickel-based superalloy based on fracture mechanics methodology. International Journal of Fatigue, 2020, 136, 105575.                                                 | 2.8 | 15        |
| 51 | Analysis of creep–fatigue life prediction models for nickel-based super alloys. Computational<br>Materials Science, 2012, 57, 80-88.                                                                              | 1.4 | 14        |
| 52 | Computational investigation of multi-axial damage modeling for porous sintered metals with experimental verification. Engineering Fracture Mechanics, 2015, 149, 89-110.                                          | 2.0 | 14        |
| 53 | Chemo-thermo-mechanical modeling of EB-PVD TBC failure subjected to isothermal and cyclic thermal exposures. International Journal of Fatigue, 2020, 141, 105817.                                                 | 2.8 | 14        |
| 54 | Microstructural characterization and fatigue performance of the recast material induced by laser<br>manufacturing of a nickel-based superalloy. Journal of Materials Processing Technology, 2021, 293,<br>117087. | 3.1 | 14        |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Identification of material parameters of micropolar theory for composites by homogenization method. Computational Materials Science, 2009, 46, 733-737.                                                                                                                      | 1.4 | 13        |
| 56 | Prediction of fatigue crack growth retardation using a cyclic cohesive zone model. Archive of Applied<br>Mechanics, 2017, 87, 1061-1075.                                                                                                                                     | 1.2 | 13        |
| 57 | Plasticity modeling for a metastable austenitic stainless steel with strain-induced martensitic<br>transformation under cyclic loading conditions. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2020, 775, 138961. | 2.6 | 13        |
| 58 | Anisotropic damage evolution and modeling for a nickel-based superalloy built by additive manufacturing. Engineering Fracture Mechanics, 2022, 268, 108450.                                                                                                                  | 2.0 | 13        |
| 59 | Title is missing!. International Journal of Fracture, 2000, 100, 355-377.                                                                                                                                                                                                    | 1.1 | 12        |
| 60 | Continuum damage mechanics for sintered powder metals. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-12.                                                                                                                                                      | 2.0 | 12        |
| 61 | Elastoplastic crack analysis for pressure-sensitive dilatant materials-Part II: Interface cracks.<br>International Journal of Fracture, 1995, 69, 167-187.                                                                                                                   | 1.1 | 11        |
| 62 | Nonlocal damage modelling using the element-free Galerkin method in the frame of finite strains.<br>Computational Materials Science, 2009, 46, 660-666.                                                                                                                      | 1.4 | 10        |
| 63 | Cyclic plasticity modeling and fatigue life assessment of the recasting material of a nickel-based superalloy induced by laser manufacturing. International Journal of Fatigue, 2021, 147, 106154.                                                                           | 2.8 | 10        |
| 64 | Computational modelling of poro-visco-hyperelastic effects on time-dependent fatigue crack growth of hydrogels. International Journal of Plasticity, 2022, 155, 103307.                                                                                                      | 4.1 | 10        |
| 65 | Comparison of computational predictions of material failure using nonlocal damage models.<br>International Journal of Solids and Structures, 2004, 41, 1021-1037.                                                                                                            | 1.3 | 9         |
| 66 | Damage modeling of oxide/oxide ceramic matrix composites under cyclic loading conditions. Ceramics<br>International, 2020, 46, 23379-23389.                                                                                                                                  | 2.3 | 9         |
| 67 | Computational assessment of cracks under strain-gradient plasticity. International Journal of Fracture, 2011, 167, 235-248.                                                                                                                                                  | 1.1 | 8         |
| 68 | Investigation of Micromechanical Deformation Mechanisms in Sinter Powder Metals. Advanced<br>Materials Research, 0, 668, 351-355.                                                                                                                                            | 0.3 | 8         |
| 69 | A novel elastoplastic constitutive model for woven oxide/oxide ceramic matrix composites with anisotropic hardening. Composite Structures, 2019, 229, 111420.                                                                                                                | 3.1 | 8         |
| 70 | Investigation of Thermal Gradient Mechanical Fatigue Test Methods for Nickel-based Superalloys.<br>Experimental Mechanics, 2021, 61, 565-580.                                                                                                                                | 1.1 | 8         |
| 71 | Assessment of three-dimensional multi-crack propagation for fatigue life prediction. International Journal of Pressure Vessels and Piping, 2022, 198, 104660.                                                                                                                | 1.2 | 8         |
| 72 | Anisotropic cyclic plasticity modeling for additively manufactured nickelâ€based superalloys. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 2371-2387.                                                                                             | 1.7 | 8         |

| #  | Article                                                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A perturbation analysis of combined mode I and III dynamic crack propagation. Acta Mechanica, 1994,<br>104, 27-63.                                                                                                                                                                                                                              | 1.1 | 7         |
| 74 | Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage<br>Model. Materials, 2017, 10, 1250.                                                                                                                                                                                                       | 1.3 | 7         |
| 75 | Characterization of the recasting-affected zone in the nickel-based superalloy upon single-pulse laser treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141897.                                                                                                        | 2.6 | 7         |
| 76 | Shielding effects on fatigue and crack growth of the recasting zone induced by laser manufacturing in a nickel-based superalloy. International Journal of Fatigue, 2022, 154, 106523.                                                                                                                                                           | 2.8 | 7         |
| 77 | Modelling and simulation of coupled fluid transport and time-dependent fracture in fibre-reinforced hydrogel composites. Computer Methods in Applied Mechanics and Engineering, 2022, 390, 114470.                                                                                                                                              | 3.4 | 7         |
| 78 | Effects of heat treatments on microstructure and mechanical properties of laser melting multi-layer materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143380.                                                                                                           | 2.6 | 7         |
| 79 | Fracture mechanics assessment of stress concentrations in incomplete fretting contacts. Engineering Fracture Mechanics, 2009, 76, 2344-2358.                                                                                                                                                                                                    | 2.0 | 6         |
| 80 | Computational analysis and characterization of fretting stress fields. Computational Materials Science, 2009, 45, 674-679.                                                                                                                                                                                                                      | 1.4 | 6         |
| 81 | Applications of meshless methods for damage computations with finite strains. Modelling and Simulation in Materials Science and Engineering, 2009, 17, 045005.                                                                                                                                                                                  | 0.8 | 6         |
| 82 | Applications of the element-free Galerkin method for singular stress analysis under strain gradient plasticity theories. Engineering Fracture Mechanics, 2011, 78, 452-461.                                                                                                                                                                     | 2.0 | 6         |
| 83 | Experimental and computational investigations of nonlinear frictional behavior in threaded fasteners. Tribology International, 2021, 154, 106737.                                                                                                                                                                                               | 3.0 | 6         |
| 84 | A nonlocal treatment technique based on the background cell concept for micro-mechanical damage<br>modeling. Acta Mechanica, 2015, 226, 1529-1547.                                                                                                                                                                                              | 1.1 | 5         |
| 85 | Kinetics of deformation-induced martensitic transformation under cyclic loading conditions. Scripta<br>Materialia, 2020, 189, 53-57.                                                                                                                                                                                                            | 2.6 | 5         |
| 86 | On <mml:math <br="" display="inline" id="d1e904" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si128.svg"&gt;<mml:mrow><mml:mi>Î"</mml:mi><mml:mi>J</mml:mi></mml:mrow></mml:math><br>characterization of elasticâ€"plastic crack-tip fields under fatigue loading conditions. International<br>lournal of Fatigue. 2022. 160. 106849. | 2.8 | 5         |
| 87 | Multi-axial fatigue life assessment of additively manufactured nickel-based superalloys. International<br>Journal of Fatigue, 2022, 163, 107049.                                                                                                                                                                                                | 2.8 | 5         |
| 88 | Singular stress fields at V-notch tips in elastoplastic pressure-sensitive materials. Acta Mechanica,<br>1996, 118, 151-170.                                                                                                                                                                                                                    | 1.1 | 4         |
| 89 | Micro-defect effect on gigacycle fatigue <i>S-N</i> property and very slow crack growth of high strength low alloy steel. Materials Science and Technology, 2013, 29, 1101-1110.                                                                                                                                                                | 0.8 | 4         |
| 90 | Application of a Cohesive Zone Model for Simulating Fatigue Crack Growth from Moderate to High<br><mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi<br>mathvariant="normal"&gt;Î"<mml:mi>K</mml:mi></mml:mi<br></mml:math> Levels of Inconel 718. International<br>Journal of Aerospace Engineering, 2018, 2018, 1-13.   | 0.5 | 4         |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Experimental and Computational Investigations on Fretting Fatigue Crack Growth in Dovetail Joints.<br>AIAA Journal, 2022, 60, 4893-4905.                                                                                                          | 1.5 | 4         |
| 92  | Numerical Simulation of Creep-Fatigue Crack Growth for Nickel-Based Super Alloy with Extended Finite Element Method. Advanced Materials Research, 2011, 321, 171-175.                                                                             | 0.3 | 3         |
| 93  | Cohesive Zone Modeling for 3D Ductile Crack Propagation. Applied Mechanics and Materials, 0, 853, 132-136.                                                                                                                                        | 0.2 | 3         |
| 94  | A quantitative description of machining effects to mechanical behavior of sintered powder metals.<br>Journal of Materials Processing Technology, 2018, 258, 310-318.                                                                              | 3.1 | 3         |
| 95  | Asymptotic Analysis of Steady-State Crack Extension of Combined Modes I and III in Elastic-Plastic<br>Materials with Linear Hardening. , 1993, , 185-207.                                                                                         |     | 3         |
| 96  | Estimate of Temperature Gradients of Thin-Walled Structures Under Thermomechanical Fatigue<br>Loading. AIAA Journal, 2022, 60, 5489-5499.                                                                                                         | 1.5 | 3         |
| 97  | Plane stress near-tip field analysis of steady-state crack growth along a linear-hardening<br>elastic-plastic interface. Acta Mechanica, 1995, 109, 207-226.                                                                                      | 1.1 | 2         |
| 98  | Dynamic crack growth along an elastoplastic bimaterial interface. Acta Mechanica, 1997, 121, 51-77.                                                                                                                                               | 1.1 | 2         |
| 99  | Notes on plastic reloading zone in the asymptotic analysis of elastic-plastic crack extension. Archive of Applied Mechanics, 1991, 61, 471-478.                                                                                                   | 1.2 | 2         |
| 100 | Quantitative correlation between rafting microstructure and anisotropic mechanical behavior in<br>dual-phase materials. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2022, 847, 143286. | 2.6 | 2         |
| 101 | Computational boundary layer approaches for fatigue crack propagation under mixed-mode loading conditions. Proceedings in Applied Mathematics and Mechanics, 2008, 8, 10251-10252.                                                                | 0.2 | 1         |
| 102 | On overall properties of microâ€polar composites with interface effects. Proceedings in Applied<br>Mathematics and Mechanics, 2008, 8, 10579-10580.                                                                                               | 0.2 | 1         |
| 103 | An Asymptotic Analysis of Static and Dynamic Crack Extension Along a Ductile Bimaterial<br>Interface/Anti-Plane Case. , 1993, , 208-226.                                                                                                          |     | 1         |
| 104 | Characterization of isothermal and cyclic thermal damage of EBâ€₽VD TBCs with the help of the 3Dâ€DIC technique. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 186-202.                                                 | 1.7 | 1         |
| 105 | Computational Analysis of Fatigue Crack Propagation at Elevated Temperature for IN718. Applied Mechanics and Materials, 0, 110-116, 29-32.                                                                                                        | 0.2 | Ο         |
| 106 | Micro and macro cracks. Engineering Fracture Mechanics, 2012, 95, 1.                                                                                                                                                                              | 2.0 | 0         |
| 107 | On Determining Elastic Modulus from Instrumented Indentation. Advanced Materials Research, 0, 668, 616-620.                                                                                                                                       | 0.3 | Ο         |
| 108 | LCF Assessment of Electron-Beam-Welded Notched Parts of Nickel-Based Superalloy Inconel 718. , 2014,                                                                                                                                              |     | 0         |

| #   | Article                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Thermal Gradient Mechanical Fatigue Assessment of a Nickel-Based Superalloy. MATEC Web of<br>Conferences, 2019, 300, 07004. | 0.1 | 0         |
| 110 | Size-dependent fracture energy correlated with the crack tip stress fields in concrete-like materials. , 2004, , 423-434.   |     | 0         |

8