Benedikt B Kaufer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7816771/publications.pdf

Version: 2024-02-01

112 3,215 28
papers citations h-index

121 121 121 2651 all docs docs citations times ranked citing authors

50

g-index

#	Article	IF	CITATIONS
1	Visualization of Marek's Disease Virus Genomes in Living Cells during Lytic Replication and Latency. Viruses, 2022, 14, 287.	3.3	1
2	Rare isolation of human-tropic recombinant porcine endogenous retroviruses PERV-A/C from GÃ \P ttingen minipigs. Virology Journal, 2022, 19, 30.	3.4	7
3	Effect of Insertion and Deletion in the Meq Protein Encoded by Highly Oncogenic Marek's Disease Virus on Transactivation Activity and Virulence. Viruses, 2022, 14, 382.	3.3	5
4	Virological Characterization of Pigs with Erythema Multiforme. Microorganisms, 2022, 10, 652.	3.6	5
5	Marek's Disease Virus Virulence Genes Encode Circular RNAs. Journal of Virology, 2022, 96, e0032122.	3.4	11
6	Selective inhibition of miRNA processing by a herpesvirus-encoded miRNA. Nature, 2022, 605, 539-544.	27.8	23
7	The Diverse Major Histocompatibility Complex Haplotypes of a Common Commercial Chicken Line and Their Effect on Marek's Disease Virus Pathogenesis and Tumorigenesis. Frontiers in Immunology, 2022, 13, .	4.8	3
8	Marek's Disease Virus Requires Both Copies of the Inverted Repeat Regions for Efficient In Vivo Replication and Pathogenesis. Journal of Virology, 2021, 95, .	3.4	10
9	Evolutionary History of Endogenous Human Herpesvirus 6 Reflects Human Migration out of Africa. Molecular Biology and Evolution, 2021, 38, 96-107.	8.9	31
10	Applications of mass spectrometry imaging in virus research. Advances in Virus Research, 2021, 109, 31-62.	2.1	9
11	Combinatorial Drug Treatments Reveal Promising Anticytomegaloviral Profiles for Clinically Relevant Pharmaceutical Kinase Inhibitors (PKIs). International Journal of Molecular Sciences, 2021, 22, 575.	4.1	22
12	Left-handed DNA-PAINT for improved super-resolution imaging in the nucleus. Nature Biotechnology, 2021, 39, 551-554.	17.5	25
13	Higher-Order Chromatin Structures of Chromosomally Integrated HHV-6A Predict Integration Sites. Frontiers in Cellular and Infection Microbiology, 2021, 11, 612656.	3.9	2
14	Potential Differences in Cleavage of the S Protein and Type 1 Interferon Together Control Human Coronavirus Infection, Propagation, and Neuropathology within the Central Nervous System. Journal of Virology, 2021, 95, .	3.4	14
15	Cas9-expressing chickens and pigs as resources for genome editing in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
16	The dominantly expressed class II molecule from a resistant MHC haplotype presents only a few Marek's disease virus peptides by using an unprecedented binding motif. PLoS Biology, 2021, 19, e3001057.	5.6	14
17	A Genetically Engineered Commercial Chicken Line Is Resistant to Highly Pathogenic Avian Leukosis Virus Subgroup J. Microorganisms, 2021, 9, 1066.	3.6	10
18	Polysulfate hemmen durch elektrostatische Wechselwirkungen die SARSâ€CoVâ€2â€Infektion**. Angewandte Chemie, 2021, 133, 16005-16014.	2.0	0

#	Article	IF	CITATIONS
19	Polysulfates Block SARSâ€CoVâ€2 Uptake through Electrostatic Interactions**. Angewandte Chemie - International Edition, 2021, 60, 15870-15878.	13.8	49
20	The Marek's Disease Virus Unique Gene MDV082 Is Dispensable for Virus Replication but Contributes to a Rapid Disease Onset. Journal of Virology, 2021, 95, e0013121.	3.4	3
21	Varicella-zoster virus early infection but not complete replication is required for the induction of chronic hypersensitivity in rat models of postherpetic neuralgia. PLoS Pathogens, 2021, 17, e1009689.	4.7	8
22	Characterization of a Novel Viral Interleukin 8 (vIL-8) Splice Variant Encoded by Marek's Disease Virus. Microorganisms, 2021, 9, 1475.	3.6	1
23	In vitro efficacy of Artemisia extracts against SARS-CoV-2. Virology Journal, 2021, 18, 182.	3.4	39
24	Inhibition of SARS-CoV-2 Replication by a Small Interfering RNA Targeting the Leader Sequence. Viruses, 2021, 13, 2030.	3.3	23
25	Marek's disease virus prolongs survival of primary chicken B-cells by inducing a senescence-like phenotype. PLoS Pathogens, 2021, 17, e1010006.	4.7	6
26	Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity. International Journal of Molecular Sciences, 2021, 22, 12858.	4.1	23
27	A Cell Culture System to Investigate Marek's Disease Virus Integration into Host Chromosomes. Microorganisms, 2021, 9, 2489.	3.6	5
28	Virological and Parasitological Characterization of Mini-LEWE Minipigs Using Improved Screening Methods and an Overview of Data on Various Minipig Breeds. Microorganisms, 2021, 9, 2617.	3.6	13
29	Marek's Disease Virus Modulates T Cell Proliferation via Activation of Cyclooxygenase 2-Dependent Prostaglandin E2. Frontiers in Immunology, 2021, 12, 801781.	4.8	6
30	Transmission of chromosomally integrated human herpes virus-6A via haploidentical stem cell transplantation poses a risk for virus reactivation and associated complications. Bone Marrow Transplantation, 2020, 55, 260-264.	2.4	2
31	The Promyelocytic Leukemia Protein facilitates human herpesvirus 6B chromosomal integration, immediate-early 1 protein multiSUMOylation and its localization at telomeres. PLoS Pathogens, 2020, 16 , e1008683.	4.7	15
32	Unbiased optical mapping of telomere-integrated endogenous human herpesvirus 6. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31410-31416.	7.1	18
33	Role of DNA Methylation and CpG Sites in the Viral Telomerase RNA Promoter during Gallid Herpesvirus 2 Pathogenesis. Journal of Virology, 2020, 94, .	3.4	2
34	Acquiring Resistance Against a Retroviral Infection via CRISPR/Cas9 Targeted Genome Editing in a Commercial Chicken Line. Frontiers in Genome Editing, 2020, 2, 3.	5.2	19
35	Latest Insights into Marek's Disease Virus Pathogenesis and Tumorigenesis. Cancers, 2020, 12, 647.	3.7	54
36	Abrogation of Marek's disease virus replication using CRISPR/Cas9. Scientific Reports, 2020, 10, 10919.	3.3	15

#	Article	IF	CITATIONS
37	Current understanding of human herpesvirus 6 (HHV-6) chromosomal integration. Antiviral Research, 2020, 176, 104720.	4.1	41
38	The trimeric artesunate derivative TF27 exerts strong anti-cytomegaloviral efficacy: Focus on prophylactic efficacy and oral treatment of immunocompetent mice. Antiviral Research, 2020, 178, 104788.	4.1	12
39	Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. PLoS Pathogens, 2020, 16, e1008496.	4.7	11
40	Distinct polymorphisms in a single herpesvirus gene are capable of enhancing virulence and mediating vaccinal resistance. PLoS Pathogens, 2020, 16, e1009104.	4.7	20
41	Title is missing!. , 2020, 16, e1009104.		0
42	Title is missing!. , 2020, 16, e1009104.		0
43	Title is missing!. , 2020, 16, e1009104.		0
44	Title is missing!. , 2020, 16, e1009104.		0
45	Title is missing!. , 2020, 16, e1009104.		0
46	Title is missing!. , 2020, 16, e1009104.		0
47	Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. , 2020, 16, e1008496.		0
48	Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. , 2020, 16, e 1008496 .		0
49	Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. , 2020, 16, e1008496.		0
50	Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. , 2020, 16, e1008496.		0
51	Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. , 2020, 16, e1008496.		0
52	Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. , 2020, 16, e1008496.		0
53	Chromatin Profiles of Chromosomally Integrated Human Herpesvirus-6A. Frontiers in Microbiology, 2019, 10, 1408.	3.5	22
54	Artesunate derivative TF27 inhibits replication and pathogenesis of an oncogenic avian alphaherpesvirus. Antiviral Research, 2019, 171, 104606.	4.1	12

#	Article	IF	CITATIONS
55	LANA oligomeric architecture is essential for KSHV nuclear body formation and viral genome maintenance during latency. PLoS Pathogens, 2019, 15, e1007489.	4.7	30
56	The Role of Marek's Disease Virus UL12 and UL29 in DNA Recombination and the Virus Lifecycle. Viruses, 2019, 11, 111.	3.3	10
57	The Transcriptional Landscape of Marek's Disease Virus in Primary Chicken B Cells Reveals Novel Splice Variants and Genes. Viruses, 2019, 11, 264.	3.3	29
58	Replication of Marek's Disease Virus Is Dependent on Synthesis of <i>De Novo</i> Fatty Acid and Prostaglandin E ₂ . Journal of Virology, 2019, 93, .	3.4	23
59	A Common Live-Attenuated Avian Herpesvirus Vaccine Expresses a Very Potent Oncogene. MSphere, 2019, 4, .	2.9	24
60	Marek's Disease Virus Infection of Natural Killer Cells. Microorganisms, 2019, 7, 588.	3.6	34
61	Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species. Viruses, 2019, 11, 1108.	3.3	32
62	IFNα and IFNγ Impede Marek's Disease Progression. Viruses, 2019, 11, 1103.	3.3	16
63	In vivo proof-of-concept for two experimental antiviral drugs, both directed to cellular targets, using a murine cytomegalovirus model. Antiviral Research, 2019, 161, 63-69.	4.1	26
64	Imaging Mass Spectrometry and Proteome Analysis of Marek's Disease Virus-Induced Tumors. MSphere, 2019, 4, .	2.9	11
65	Overexpression of cellular telomerase RNA enhances virus-induced cancer formation. Oncogene, 2019, 38, 1778-1786.	5.9	16
66	Artesunate-derived monomeric, dimeric and trimeric experimental drugs â€" Their unique mechanistic basis and pronounced antiherpesviral activity. Antiviral Research, 2018, 152, 104-110.	4.1	26
67	Attenuation of Simian Varicella Virus Infection by Enhanced Green Fluorescent Protein in Rhesus Macaques. Journal of Virology, 2018, 92, .	3.4	5
68	Epstein-Barr virus-encoded RNAs (EBERs) complement the loss of Herpesvirus telomerase RNA (vTR) in virus-induced tumor formation. Scientific Reports, 2018, 8, 209.	3.3	17
69	Viral Proteins U41 and U70 of Human Herpesvirus 6A Are Dispensable for Telomere Integration. Viruses, 2018, 10, 656.	3.3	18
70	Unraveling the role of B cells in the pathogenesis of an oncogenic avian herpesvirus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11603-11607.	7.1	32
71	The ND10 Complex Represses Lytic Human Herpesvirus 6A Replication and Promotes Silencing of the Viral Genome. Viruses, 2018, 10, 401.	3.3	12
72	Viral Factors Involved in Marek's Disease Virus (MDV) Pathogenesis. Current Clinical Microbiology Reports, 2018, 5, 238-244.	3.4	19

#	Article	IF	CITATIONS
73	Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration. Journal of Virology, 2017, 91, .	3.4	30
74	Induction of DNA Damages upon Marek's Disease Virus Infection: Implication in Viral Replication and Pathogenesis. Journal of Virology, 2017, 91, .	3.4	15
75	Telomeres and Telomerase: Role in Marek's Disease Virus Pathogenesis, Integration and Tumorigenesis. Viruses, 2017, 9, 173.	3.3	20
76	Identification of the Receptor and Cellular Ortholog of the Marek's Disease Virus (MDV) CXC Chemokine. Frontiers in Microbiology, 2017, 8, 2543.	3.5	17
77	Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration. PLoS Pathogens, 2017, 13, e1006346.	4.7	19
78	Association of Marek's Disease induced immunosuppression with activation of a novel regulatory T cells in chickens. PLoS Pathogens, 2017, 13, e1006745.	4.7	43
79	Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration. Journal of Virology, 2017, 91, .	3.4	40
80	The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress. PLoS Pathogens, 2016, 12, e1005825.	4.7	43
81	Varicella zoster virus infection of human fetal lung cells alters mitochondrial morphology. Journal of NeuroVirology, 2016, 22, 674-682.	2.1	7
82	Generation of an Avian-Mammalian Rotavirus Reassortant by Using a Helper Virus-Dependent Reverse Genetics System. Journal of Virology, 2016, 90, 1439-1443.	3.4	36
83	The putative U94 integrase is dispensable for human herpesvirus 6 (HHV-6) chromosomal integration. Journal of General Virology, 2016, 97, 1899-1903.	2.9	35
84	The Telomeric Repeats of Human Herpesvirus 6A (HHV-6A) Are Required for Efficient Virus Integration. PLoS Pathogens, 2016, 12, e1005666.	4.7	58
85	Multiplex Real-Time PCR Assay for the Detection and Differentiation of Poxviruses and Poxvirus Vectors. Applied Biosafety, 2015, 20, 192-200.	0.5	4
86	Chromosomally integrated human herpesvirus 6 in heart failure: prevalence and treatment. European Journal of Heart Failure, 2015, 17, 9-19.	7.1	70
87	3D tissue-like assemblies: A novel approach to investigate virus–cell interactions. Methods, 2015, 90, 76-84.	3.8	19
88	In vitro model for lytic replication, latency, and transformation of an oncogenic alphaherpesvirus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7279-7284.	7.1	44
89	Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins. Nucleic Acids Research, 2015, 43, 6084-6098.	14.5	27
90	Herpesvirus Genome Integration into Telomeric Repeats of Host Cell Chromosomes. Annual Review of Virology, 2014, 1, 215-235.	6.7	59

#	Article	lF	CITATIONS
91	Role of the Short Telomeric Repeat Region in Marek's Disease Virus Replication, Genomic Integration, and Lymphomagenesis. Journal of Virology, 2014, 88, 14138-14147.	3.4	29
92	Chromosomally integrated HHV-6: impact on virus, cell and organismal biology. Current Opinion in Virology, 2014, 9, 111-118.	5.4	89
93	Elimination halfâ€ife of intravenously administered equine cardiac troponin I in healthy ponies. Equine Veterinary Journal, 2013, 45, 56-59.	1.7	23
94	BACs (Bacterial Artificial Chromosomes). , 2013, , 251-253.		0
95	Marek's disease virus (MDV) ubiquitin-specific protease (USP) performs critical functions beyond its enzymatic activity during virus replication. Virology, 2013, 437, 110-117.	2.4	9
96	Three-Dimensional Normal Human Neural Progenitor Tissue-Like Assemblies: A Model of Persistent Varicella-Zoster Virus Infection. PLoS Pathogens, 2013, 9, e1003512.	4.7	28
97	Detection of Integrated Herpesvirus Genomes by Fluorescence In Situ Hybridization (FISH). Methods in Molecular Biology, 2013, 1064, 141-152.	0.9	26
98	Fluorescently Tagged pUL47 of Marek's Disease Virus Reveals Differential Tissue Expression of the Tegument Protein In Vivo. Journal of Virology, 2012, 86, 2428-2436.	3.4	48
99	Viral Bacterial Artificial Chromosomes: Generation, Mutagenesis, and Removal of Mini-F Sequences. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-14.	3.0	60
100	Marek's Disease Viral Interleukin-8 Promotes Lymphoma Formation through Targeted Recruitment of B Cells and CD4 ⁺ CD25 ⁺ T Cells. Journal of Virology, 2012, 86, 8536-8545.	3.4	65
101	Simian varicella virus open reading frame 63/70 expression is required for efficient virus replication in culture. Journal of NeuroVirology, 2011, 17, 274-280.	2.1	7
102	Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. Journal of Experimental Medicine, 2011, 208, 605-615.	8.5	97
103	Herpesvirus Telomerase RNA (νTR) with a Mutated Template Sequence Abrogates Herpesvirus-Induced Lymphomagenesis. PLoS Pathogens, 2011, 7, e1002333.	4.7	37
104	Varicella-zoster virus–induced apoptosis in MeWo cells is accompanied by down-regulation of Bcl-2 expression. Journal of NeuroVirology, 2010, 16, 133-140.	2.1	24
105	The Varicella-Zoster Virus ORFS/L (ORF0) Gene Is Required for Efficient Viral Replication and Contains an Element Involved in DNA Cleavage. Journal of Virology, 2010, 84, 11661-11669.	3.4	20
106	Herpesvirus Telomerase RNA(vTR)-Dependent Lymphoma Formation Does Not Require Interaction of vTR with Telomerase Reverse Transcriptase (TERT). PLoS Pathogens, 2010, 6, e1001073.	4.7	36
107	Analysis of the Herpesvirus Chemokine-binding Glycoprotein G Residues Essential for Chemokine Binding and Biological Activity. Journal of Biological Chemistry, 2009, 284, 5968-5976.	3.4	14
108	Enzymatically inactive US3 protein kinase of Marek's disease virus (MDV) is capable of depolymerizing F-actin but results in accumulation of virions in perinuclear invaginations and reduced virus growth. Virology, 2008, 375, 37-47.	2.4	31

#	Article	IF	CITATIONS
109	The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Molecular Immunology, 2008, 45, 1981-1994.	2.2	59
110	A herpesvirus ubiquitin-specific protease is critical for efficient T cell lymphoma formation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20025-20030.	7.1	74
111	A Self-Excisable Infectious Bacterial Artificial Chromosome Clone of Varicella-Zoster Virus Allows Analysis of the Essential Tegument Protein Encoded by <i>ORF9</i> . Journal of Virology, 2007, 81, 13200-13208.	3.4	118
112	Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in <i>Escherichia coli</i> . BioTechniques, 2006, 40, 191-197.	1.8	703