Vicky L Baillie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7816610/publications.pdf

Version: 2024-02-01

		236925	175258
54	11,863	25	52
papers	citations	h-index	g-index
60	60	60	19160
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, The, 2021, 397, 99-111.	13.7	3,887
2	Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet, The, 2017, 390, 946-958.	13.7	1,634
3	Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. New England Journal of Medicine, 2021, 384, 1885-1898.	27.0	1,077
4	Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet, The, 2021, 397, 881-891.	13.7	979
5	SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell, 2022, 185, 467-484.e15.	28.9	788
6	Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell, 2021, 184, 4220-4236.e13.	28.9	630
7	Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet, The, 2019, 394, 757-779.	13.7	569
8	Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. New England Journal of Medicine, 2021, 384, 1899-1909.	27.0	541
9	Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. The Lancet Global Health, 2019, 7, e1031-e1045.	6.3	266
10	Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South Africa: an interim analysis of a randomised, double-blind, placebo-controlled, phase 1B/2A trial. Lancet HIV,the, 2021, 8, e568-e580.	4.7	124
11	Density of Upper Respiratory Colonization With Streptococcus pneumoniae and Its Role in the Diagnosis of Pneumococcal Pneumonia Among Children Aged &It5 Years in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S317-S327.	5.8	96
12	Initial findings from a novel population-based child mortality surveillance approach: a descriptive study. The Lancet Global Health, 2020, 8, e909-e919.	6.3	89
13	Association of C-Reactive Protein With Bacterial and Respiratory Syncytial Virus–Associated Pneumonia Among Children Aged &It5 Years in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S378-S386.	5.8	84
14	ls Higher Viral Load in the Upper Respiratory Tract Associated With Severe Pneumonia? Findings From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S337-S346.	5.8	81
15	Global burden of acute lower respiratory infection associated with human metapneumovirus in children under 5 years in 2018: a systematic review and modelling study. The Lancet Global Health, 2021, 9, e33-e43.	6.3	71
16	Chest Radiograph Findings in Childhood Pneumonia Cases From the Multisite PERCH Study. Clinical Infectious Diseases, 2017, 64, S262-S270.	5.8	56
17	Colonization Density of the Upper Respiratory Tract as a Predictor of Pneumonia—Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. Clinical Infectious Diseases, 2017, 64, S328-S336.	5.8	49
18	Standardization of Laboratory Methods for the PERCH Study. Clinical Infectious Diseases, 2017, 64, S245-S252.	5.8	48

#	Article	IF	CITATIONS
19	Pertussis-Associated Pneumonia in Infants and Children From Low- and Middle-Income Countries Participating in the PERCH Study. Clinical Infectious Diseases, 2016, 63, S187-S196.	5.8	38
20	Microscopic Analysis and Quality Assessment of Induced Sputum From Children With Pneumonia in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S271-S279.	5.8	32
21	Unraveling Specific Causes of Neonatal Mortality Using Minimally Invasive Tissue Sampling: An Observational Study. Clinical Infectious Diseases, 2019, 69, S351-S360.	5.8	32
22	Limited Utility of Polymerase Chain Reaction in Induced Sputum Specimens for Determining the Causes of Childhood Pneumonia in Resource-Poor Settings: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2017, 64, S289-S300.	5.8	31
23	Evaluation of Pneumococcal Load in Blood by Polymerase Chain Reaction for the Diagnosis of Pneumococcal Pneumonia in Young Children in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S357-S367.	5.8	30
24	Potential of Minimally Invasive Tissue Sampling for Attributing Specific Causes of Childhood Deaths in South Africa: A Pilot, Epidemiological Study. Clinical Infectious Diseases, 2019, 69, S361-S373.	5.8	29
25	Estimated SARS-CoV-2 infection rate and fatality risk in Gauteng Province, South Africa: a population-based seroepidemiological survey. International Journal of Epidemiology, 2022, 51, 404-417.	1.9	29
26	Standardization of Clinical Assessment and Sample Collection Across All PERCH Study Sites. Clinical Infectious Diseases, 2017, 64, S228-S237.	5.8	27
27	Emergence and phenotypic characterization of the global SARS-CoV-2 C.1.2 lineage. Nature Communications, 2022, 13, 1976.	12.8	27
28	The Predictive Performance of a Pneumonia Severity Score in Human Immunodeficiency Virus–negative Children Presenting to Hospital in 7 Low- and Middle-income Countries. Clinical Infectious Diseases, 2020, 70, 1050-1057.	5.8	26
29	Should Controls With Respiratory Symptoms Be Excluded From Case-Control Studies of Pneumonia Etiology? Reflections From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S205-S212.	5.8	25
30	Postmortem investigations and identification of multiple causes of child deaths: An analysis of findings from the Child Health and Mortality Prevention Surveillance (CHAMPS) network. PLoS Medicine, 2021, 18, e1003814.	8.4	24
31	SARS-CoV-2 Omicron Symptomatic Infections in Previously Infected or Vaccinated South African Healthcare Workers. Vaccines, 2022, 10, 459.	4.4	24
32	The Incremental Value of Repeated Induced Sputum and Gastric Aspirate Samples for the Diagnosis of Pulmonary Tuberculosis in Young Children With Acute Community-Acquired Pneumonia. Clinical Infectious Diseases, 2017, 64, S309-S316.	5.8	21
33	Severe Acute Respiratory Syndrome Coronavirus 2 Infection Among Healthcare Workers in South Africa: A Longitudinal Cohort Study. Clinical Infectious Diseases, 2021, 73, 1896-1900.	5.8	20
34	An Observational Pilot Study Evaluating the Utility of Minimally Invasive Tissue Sampling to Determine the Cause of Stillbirths in South African Women. Clinical Infectious Diseases, 2019, 69, S342-S350.	5.8	19
35	Deaths Attributed to Respiratory Syncytial Virus in Young Children in High–Mortality Rate Settings: Report from Child Health and Mortality Prevention Surveillance (CHAMPS). Clinical Infectious Diseases, 2021, 73, S218-S228.	5.8	19
36	Safety of Induced Sputum Collection in Children Hospitalized With Severe or Very Severe Pneumonia. Clinical Infectious Diseases, 2017, 64, S301-S308.	5.8	17

#	Article	IF	Citations
37	High levels of genetic variation within Helicoverpa armigera nucleopolyhedrovirus populations in individual host insects. Archives of Virology, 2012, 157, 2281-2289.	2.1	15
38	The Etiology of Pneumonia From Analysis of Lung Aspirate and Pleural Fluid Samples: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2021, 73, e3788-e3796.	5.8	14
39	Molecular Subtyping of Human Rhinovirus in Children from Three Sub-Saharan African Countries. Journal of Clinical Microbiology, 2019, 57, .	3.9	13
40	The Etiology of Pneumonia in HIV-uninfected South African Children. Pediatric Infectious Disease Journal, 2021, 40, S59-S68.	2.0	10
41	The effect of inoculum dose on the genetic diversity detected within Helicoverpa armigera nucleopolyhedrovirus populations. Journal of General Virology, 2013, 94, 2524-2529.	2.9	9
42	Epidemiology of the Rhinovirus (RV) in African and Southeast Asian Children: A Case-Control Pneumonia Etiology Study. Viruses, 2021, 13, 1249.	3.3	9
43	Epidemiology and Seasonality of Endemic Human Coronaviruses in South African and Zambian Children: A Case-Control Pneumonia Study. Viruses, 2021, 13, 1513.	3.3	9
44	High levels of genetic variation within core Helicoverpa armigera nucleopolyhedrovirus genes. Virus Genes, 2012, 44, 149-162.	1.6	8
45	Clinical Characteristics and Histopathology of Coronavirus Disease 2019-Related Deaths in African Children. Pediatric Infectious Disease Journal, 2021, 40, e323-e332.	2.0	8
46	Clinical characteristics and histopathology of COVID-19 related deaths in South African adults. PLoS ONE, 2022, 17, e0262179.	2.5	8
47	Development of highly sensitive assays for detection of genetic variation in key Helicoverpa armigera nucleopolyhedrovirus genes. Journal of Virological Methods, 2011, 178, 179-185.	2.1	7
48	A prospective case-control study on the association of Rhinovirus nasopharyngeal viral load and viremia in South African children hospitalized with severe pneumonia. Journal of Clinical Virology, 2020, 125, 104288.	3.1	7
49	Correlation of dried blood spots and plasma for quantification of Immunoglobulin (IgG) against Receptor binding domain and full length spike protein of SARS-CoV-2. Journal of Virological Methods, 2022, 300, 114394.	2.1	7
50	Review on Clinical and Molecular Epidemiology of Human Rhinovirus–Associated Lower Respiratory Tract Infections in African and Southeast Asian Children. Pediatric Infectious Disease Journal, 2018, 37, e185-e194.	2.0	6
51	The Etiology of Pneumonia in HIV-1-infected South African Children in the Era of Antiretroviral Treatment. Pediatric Infectious Disease Journal, 2021, 40, S69-S78.	2.0	6
52	Upper Respiratory Tract Co-detection of Human Endemic Coronaviruses and High-density Pneumococcus Associated With Increased Severity Among HIV-Uninfected Children Under 5 Years Old in the PERCH Study. Pediatric Infectious Disease Journal, 2021, 40, 503-512.	2.0	5
53	SARS-CoV-2 Infection Among Healthcare Workers in South Africa: A Longitudinal Cohort Study. SSRN Electronic Journal, 0, , .	0.4	3
54	Fetal Transfer of Human Metapneumovirus-Neutralizing Antibodies Is Reduced From Mothers Living With HIV-1. Journal of the Pediatric Infectious Diseases Society, 2022, , .	1.3	1