Amand F Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7816188/publications.pdf

Version: 2024-02-01

279487 189595 3,052 61 23 50 citations h-index g-index papers 79 79 79 6120 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human Genomics and Drug Development. Cold Spring Harbor Perspectives in Medicine, 2022, 12, a039230.	2.9	16
2	Assessment of practical applicability and clinical relevance of a commonly used LDL-C polygenic score in patients with severe hypercholesterolemia. Atherosclerosis, 2022, 340, 61-67.	0.4	6
3	Cochrane corner: PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Heart, 2022, 108, 14-15.	1.2	1
4	Dissecting the ILâ€6 pathway in cardiometabolic disease: A Mendelian randomization study on both <i>IL6</i> and <i>IL6R</i> British Journal of Clinical Pharmacology, 2022, 88, 2875-2884.	1.1	29
5	Cardiovascular risk prediction in type 2 diabetes: a comparison of 22 risk scores in primary care settings. Diabetologia, 2022, 65, 644-656.	2.9	41
6	Therapeutic Targets for Heart Failure Identified Using Proteomics and Mendelian Randomization. Circulation, 2022, 145, 1205-1217.	1.6	50
7	Unravelling the Difference Between Men and Women in Post-CABG Survival. Frontiers in Cardiovascular Medicine, 2022, 9, 768972.	1.1	2
8	Lowâ€Density Lipoprotein Cholesterol Attributable Cardiovascular Disease Risk Is Sex Specific. Journal of the American Heart Association, 2022, 11, .	1.6	15
9	The impact of fatty acids biosynthesis on the risk of cardiovascular diseases in Europeans and East Asians: a Mendelian randomization study. Human Molecular Genetics, 2022, 31, 4034-4054.	1.4	5
10	Establishing reference intervals for triglyceride-containing lipoprotein subfraction metabolites measured using nuclear magnetic resonance spectroscopy in a UK population. Annals of Clinical Biochemistry, 2021, 58, 47-53.	0.8	2
11	Risk Factors and Prevalence of Dilated Cardiomyopathy in Sub-Saharan Africa: Protocol for a Systematic Review. JMIR Research Protocols, 2021, 10, e18229.	0.5	3
12	Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Research, 2021, 6, 16.	0.9	90
13	No Clinically Relevant Effect of Heart Rate Increase and Heart Rate Recovery During Exercise on Cardiovascular Disease: A Mendelian Randomization Analysis. Frontiers in Genetics, 2021, 12, 569323.	1.1	15
14	Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Research, 2021, 6, 16.	0.9	48
15	Cholesteryl ester transfer protein (CETP) as a drug target for cardiovascular disease. Nature Communications, 2021, 12, 5640.	5.8	57
16	Validation of lipid-related therapeutic targets for coronary heart disease prevention using human genetics. Nature Communications, 2021, 12, 6120.	5.8	13
17	Dementia in the older population is associated with neocortex content of serum amyloid P component. Brain Communications, 2021, 3, fcab225.	1.5	5
18	Obesity causes cardiovascular diseases: adding to the weight of evidence. European Heart Journal, 2020, 41, 227-230.	1.0	16

#	Article	IF	Citations
19	Lipid lowering and Alzheimer disease risk: A mendelian randomization study. Annals of Neurology, 2020, 87, 30-39.	2.8	64
20	PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. The Cochrane Library, 2020, 2020, CD011748.	1.5	42
21	Association of Factor V Leiden With Subsequent Atherothrombotic Events. Circulation, 2020, 142, 546-555.	1.6	11
22	Establishing reference intervals for triglyceride containing lipoprotein sub-fraction metabolites measured using nuclear magnetic resonance spectroscopy in a UK population. Atherosclerosis, 2020, 315, e95-e96.	0.4	0
23	Circulating Fatty Acids and Risk of Coronary Heart Disease and Stroke: Individual Participant Data Metaâ€Analysis in Up to 16Â126 Participants. Journal of the American Heart Association, 2020, 9, e013131.	1.6	36
24	Association between 8 Pâ€glycoprotein (MDR1/ABCB1) gene polymorphisms and antipsychotic drugâ€induced hyperprolactinaemia. British Journal of Clinical Pharmacology, 2020, 86, 1827-1835.	1.1	13
25	Association Between BDNF Gene Variant Rs6265 and the Severity of Depression in Antidepressant Treatment-Free Depressed Patients. Frontiers in Psychiatry, 2020, 11, 38.	1.3	27
26	Genetic drug target validation using Mendelian randomisation. Nature Communications, 2020, 11, 3255.	5.8	175
27	The median and the mode as robust metaâ€analysis estimators in the presence of smallâ€study effects and outliers. Research Synthesis Methods, 2020, 11, 397-412.	4.2	14
28	Polygenic risk scores for coronary artery disease and subsequent event risk amongst established cases. Human Molecular Genetics, 2020, 29, 1388-1395.	1.4	23
29	The median and the mode as robust meta-analysis estimators in the presence of small-study effects and outliers. , 2020, $11,397$.		1
30	Triglyceride-containing lipoprotein sub-fractions and risk of coronary heart disease and stroke: A prospective analysis in 11,560 adults. European Journal of Preventive Cardiology, 2020, 27, 1617-1626.	0.8	19
31	Abstract 15527: Association Between Adrenergic Receptor Modulation and the Risk of Heart Failure: A Two-sample Mendelian Randomization Study. Circulation, 2020, 142, .	1.6	O
32	Long-term incidence and risk factors of cardiovascular events in Asian populations: systematic review and meta-analysis of population-based cohort studies. Current Medical Research and Opinion, 2019, 35, 291-299.	0.9	20
33	Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9. BMC Cardiovascular Disorders, 2019, 19, 240.	0.7	22
34	When drug treatments bias genetic studies: Mediation and interaction. PLoS ONE, 2019, 14, e0221209.	1.1	4
35	Associations Between Measures of Sarcopenic Obesity and Risk of Cardiovascular Disease and Mortality: A Cohort Study and Mendelian Randomization Analysis Using the UK Biobank. Journal of the American Heart Association, 2019, 8, e011638.	1.6	75
36	Subsequent Event Risk in Individuals With Established Coronary Heart Disease. Circulation Genomic and Precision Medicine, 2019, 12, e002470.	1.6	17

#	Article	IF	CITATIONS
37	Association of Chromosome 9p21 With Subsequent Coronary Heart Disease Events. Circulation Genomic and Precision Medicine, 2019, 12, e002471.	1.6	22
38	Adjustment for index event bias in genome-wide association studies of subsequent events. Nature Communications, 2019, 10, 1561.	5.8	87
39	An electronic health records cohort study on heart failure following myocardial infarction in England: incidence and predictors. BMJ Open, 2018, 8, e018331.	0.8	31
40	Cochrane corner: PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Heart, 2018, 104, 1053-1055.	1.2	7
41	Linear regression and the normality assumption. Journal of Clinical Epidemiology, 2018, 98, 146-151.	2.4	296
42	Mendelian randomization with Egger pleiotropy correction and weakly informative Bayesian priors. International Journal of Epidemiology, 2018, 47, 1217-1228.	0.9	27
43	Adjusting for bias in unblinded randomized controlled trials. Statistical Methods in Medical Research, 2018, 27, 2413-2427.	0.7	4
44	PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. The Cochrane Library, 2017, 4, CD011748.	1.5	93
45	PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2017, 5, 97-105.	5.5	298
46	Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study. Lancet Diabetes and Endocrinology,the, 2017, 5, 534-543.	5 . 5	84
47	Impact of Selection Bias on Estimation of Subsequent Event Risk. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	28
48	Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nature Genetics, 2017, 49, 1385-1391.	9.4	571
49	Comparison of variance estimators for meta-analysis of instrumental variable estimates. International Journal of Epidemiology, 2016, 45, dyw123.	0.9	3
50	Adjusting for Confounding in Early Postlaunch Settings. Epidemiology, 2016, 27, 133-142.	1.2	11
51	Re. Epidemiology, 2016, 27, e12.	1.2	6
52	Tailoring treatments using treatment effect modification. Pharmacoepidemiology and Drug Safety, 2016, 25, 355-362.	0.9	12
53	Which dogs with appendicular osteosarcoma benefit most from chemotherapy after surgery? Results from an individual patient data meta-analysis. Preventive Veterinary Medicine, 2016, 125, 116-125.	0.7	7
54	Chemotherapy effectiveness and mortality prediction in surgically treated osteosarcoma dogs: A validation study. Preventive Veterinary Medicine, 2016, 125, 126-134.	0.7	3

#	Article	IF	CITATION
55	Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Medicine, 2016, 13, e1002179.	3.9	324
56	Bayesian methods including nonrandomized study data increased the efficiency of postlaunch RCTs. Journal of Clinical Epidemiology, 2015, 68, 387-396.	2.4	4
57	Comments on â€The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias' by Taylor R. Pressler and Eloise E. Kaizar,Statistics in Medicine 2013. Statistics in Medicine, 2014, 33, 536-537.	0.8	5
58	Exploring interaction effects in small samples increases rates of false-positive and false-negative findings: results from a systematic review and simulation study. Journal of Clinical Epidemiology, 2014, 67, 821-829.	2.4	44
59	Justification of exclusion criteria was underreported in a review of cardiovascular trials. Journal of Clinical Epidemiology, 2014, 67, 635-644.	2.4	23
60	Prognostic factors of early metastasis and mortality in dogs with appendicular osteosarcoma after receiving surgery: An individual patient data meta-analysis. Preventive Veterinary Medicine, 2013, 112, 414-422.	0.7	40
61	Differences in interaction and subgroup-specific effects were observed between randomized and nonrandomized studies in three empirical examples. Journal of Clinical Epidemiology, 2013, 66, 599-607.	2.4	14