Roger A Greenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7816107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature, 2017, 548, 466-470.	13.7	1,042
2	ATM-Dependent Chromatin Changes Silence Transcription In cis to DNA Double-Strand Breaks. Cell, 2010, 141, 970-981.	13.5	626
3	RAP80 Targets BRCA1 to Specific Ubiquitin Structures at DNA Damage Sites. Science, 2007, 316, 1198-1202.	6.0	599
4	Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nature Structural and Molecular Biology, 2013, 20, 317-325.	3.6	440
5	Break-induced telomere synthesis underlies alternative telomere maintenance. Nature, 2016, 539, 54-58.	13.7	336
6	Interchromosomal Homology Searches Drive Directional ALT Telomere Movement and Synapsis. Cell, 2014, 159, 108-121.	13.5	293
7	Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes and Development, 2006, 20, 34-46.	2.7	274
8	Biallelic Mutations in <i>BRCA1</i> Cause a New Fanconi Anemia Subtype. Cancer Discovery, 2015, 5, 135-142.	7.7	251
9	DNA Damage Follows Repair Factor Depletion and Portends Genome Variation in Cancer Cells after Pore Migration. Current Biology, 2017, 27, 210-223.	1.8	239
10	Mechanosensing by the Lamina Protects against Nuclear Rupture, DNA Damage, and Cell-Cycle Arrest. Developmental Cell, 2019, 49, 920-935.e5.	3.1	217
11	DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function. Cell Reports, 2015, 11, 785-797.	2.9	200
12	Diverse <i>BRCA1</i> and <i>BRCA2</i> Reversion Mutations in Circulating Cell-Free DNA of Therapy-Resistant Breast or Ovarian Cancer. Clinical Cancer Research, 2017, 23, 6708-6720.	3.2	194
13	The BRCA1-RAP80 Complex Regulates DNA Repair Mechanism Utilization by Restricting End Resection. Journal of Biological Chemistry, 2011, 286, 13669-13680.	1.6	192
14	ALTernative Telomere Maintenance and Cancer. Trends in Cancer, 2015, 1, 145-156.	3.8	188
15	Nuclear Acetyl-CoA Production by ACLY Promotes Homologous Recombination. Molecular Cell, 2017, 67, 252-265.e6.	4.5	184
16	Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nature Communications, 2020, 11, 3726.	5.8	169
17	Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nature Communications, 2015, 6, 6140.	5.8	143
18	MERIT40 controls BRCA1–Rap80 complex integrity and recruitment to DNA double-strand breaks. Genes and Development, 2009, 23, 740-754.	2.7	140

ROGER A GREENBERG

#	Article	IF	CITATIONS
19	ATM Dependent Silencing Links Nucleolar Chromatin Reorganization to DNA Damage Recognition. Cell Reports, 2015, 13, 251-259.	2.9	133
20	Noncanonical views of homology-directed DNA repair. Genes and Development, 2016, 30, 1138-1154.	2.7	113
21	RAD52 and SLX4 act nonepistatically to ensure telomere stability during alternative telomere lengthening. Genes and Development, 2019, 33, 221-235.	2.7	90
22	ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination-deficient cells. Nature Cell Biology, 2021, 23, 160-171.	4.6	85
23	A BRISC-SHMT Complex Deubiquitinates IFNAR1 and Regulates Interferon Responses. Cell Reports, 2013, 5, 180-193.	2.9	80
24	Nuclear body phase separation drives telomere clustering in ALT cancer cells. Molecular Biology of the Cell, 2020, 31, 2048-2056.	0.9	79
25	A Radiotracer Strategy to Quantify PARP-1 Expression <i>In Vivo</i> Provides a Biomarker That Can Enable Patient Selection for PARP Inhibitor Therapy. Cancer Research, 2016, 76, 4516-4524.	0.4	77
26	Deciphering the BRCA1 Tumor Suppressor Network. Journal of Biological Chemistry, 2015, 290, 17724-17732.	1.6	69
27	Differential Regulation of JAMM Domain Deubiquitinating Enzyme Activity within the RAP80 Complex. Journal of Biological Chemistry, 2010, 285, 30971-30981.	1.6	67
28	Cell Cycle Checkpoints Cooperate to Suppress DNA- and RNA-Associated Molecular Pattern Recognition and Anti-Tumor Immune Responses. Cell Reports, 2020, 32, 108080.	2.9	59
29	Type I Interferon Controls Propagation of Long Interspersed Element-1. Journal of Biological Chemistry, 2015, 290, 10191-10199.	1.6	56
30	Recognition of DNA double strand breaks by the BRCA1 tumor suppressor network. Chromosoma, 2008, 117, 305-317.	1.0	53
31	Metabolic control of BRISC–SHMT2 assembly regulates immune signalling. Nature, 2019, 570, 194-199.	13.7	51
32	Higher-Order Assembly of BRCC36–KIAA0157 Is Required for DUB Activity and Biological Function. Molecular Cell, 2015, 59, 970-983.	4.5	44
33	Meiosis-specific proteins MEIOB and SPATA22 cooperatively associate with the single-stranded DNA-binding replication protein A complex and DNA double-strand breaksâ€. Biology of Reproduction, 2017, 96, 1096-1104.	1.2	44
34	As a Nucleus Enters a Small Pore, Chromatin Stretches and Maintains Integrity, Even with DNA Breaks. Biophysical Journal, 2017, 112, 446-449.	0.2	41
35	Targeting PARP-1 with Alpha-Particles Is Potently Cytotoxic to Human Neuroblastoma in Preclinical Models. Molecular Cancer Therapeutics, 2019, 18, 1195-1204.	1.9	36
36	Histone tails: Directing the chromatin response to DNA damage. FEBS Letters, 2011, 585, 2883-2890.	1.3	31

ROGER A GREENBERG

#	Article	IF	CITATIONS
37	[(18)F]FluorThanatrace uptake as a marker of PARP1 expression and activity in breast cancer. American Journal of Nuclear Medicine and Molecular Imaging, 2016, 6, 94-101.	1.0	30
38	MERIT40 cooperates with BRCA2 to resolve DNA interstrand cross-links. Genes and Development, 2015, 29, 1955-1968.	2.7	22
39	Case-control analysis of truncating mutations in DNA damage response genes connects TEX15 and FANCD2 with hereditary breast cancer susceptibility. Scientific Reports, 2017, 7, 681.	1.6	20
40	The BRISC deubiquitinating enzyme complex limits hematopoietic stem cell expansion by regulating JAK2 K63-ubiquitination. Blood, 2019, 133, 1560-1571.	0.6	19
41	The abscopal effect: a sense of DNA damage is in the air. Journal of Clinical Investigation, 2021, 131, .	3.9	19
42	Choreographing the Double Strand Break Response: Ubiquitin and SUMO Control of Nuclear Architecture. Frontiers in Genetics, 2016, 7, 103.	1.1	13
43	Phosphorylation of TIP60 Suppresses 53BP1 Localization at DNA Damage Sites. Molecular and Cellular Biology, 2019, 39, .	1.1	11
44	Familiar ends with alternative endings. Nature, 2015, 518, 174-175.	13.7	10
45	Assembling a protective shield. Nature Cell Biology, 2018, 20, 862-863.	4.6	10
46	BRCA1, Everything But the RING?. Science, 2011, 334, 459-460.	6.0	8
47	MERIT40 deficiency expands hematopoietic stem cell pools by regulating thrombopoietin receptor signaling. Blood, 2015, 125, 1730-1738.	0.6	8
48	Chromatin yo-yo: expansion and condensation during DNA repair. Trends in Cell Biology, 2014, 24, 616-618.	3.6	7
49	Direct Quantitative Monitoring of Homology-Directed DNA Repair of Damaged Telomeres. Methods in Enzymology, 2018, 600, 107-134.	0.4	7
50	Telomere erosion in human pluripotent stem cells leads to ATR-mediated mitotic catastrophe. Journal of Cell Biology, 2021, 220, .	2.3	6
51	Communication between chromatin and homologous recombination. Current Opinion in Genetics and Development, 2021, 71, 1-9.	1.5	6
52	In vivo imaging of DNA double-strand break induced telomere mobility during alternative lengthening of telomeres. Methods, 2017, 114, 54-59.	1.9	5
53	Morning for Irofulven, What Could be fiNER?. Clinical Cancer Research, 2021, 27, 1833-1835.	3.2	3
54	David Livingston (1941–2021). Molecular Cell, 2022, 82, 4-7.	4.5	2

#	Article	IF	CITATIONS
55	Putting PHDs to work: PHF11 clears the way for EXO1 in double-strand break repair. Genes and Development, 2017, 31, 3-5.	2.7	0
56	HGG-33. PATIENT DERIVED CELL LINES TO STUDY ATRX AND ALT IN PEDIATRIC BRAIN TUMORS. Neuro-Oncology, 2018, 20, i96-i96.	0.6	0
57	RNF4â€Dependent Hybrid SUMOâ€Ubiquitin Chains are Signals for RAP80 and thereby Mediate the Recruitment of BRCA1 to Sites of DNA Damage. FASEB Journal, 2013, 27, 782.7.	0.2	0
58	The inner workings of replisome-dependent control of DNA damage tolerance. Genes and Development, 2022, 36, 103-105.	2.7	0
59	Firstâ€inâ€class Deubiquitylase Inhibitors Reveal New Enzyme Conformations. FASEB Journal, 2022, 36, .	0.2	0