
Kenji Sakamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7815997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacological inhibition of Na+/K+-ATPase induces neurovascular degeneration and glial cell alteration in the rat retina. Experimental Eye Research, 2022, 220, 109107.	2.6	5
2	Pharmacological depletion of retinal neurons prevents vertical angiogenic sprouting without affecting the superficial vascular plexus. Developmental Dynamics, 2021, 250, 497-512.	1.8	3
3	Role of Epoxyeicosatrienoic Acids in Acetylcholine-Induced Dilation of Rat Retinal Arterioles <i>in Vivo</i> . Biological and Pharmaceutical Bulletin, 2021, 44, 82-87.	1.4	5
4	L-Citrulline ameliorates the attenuation of acetylcholine-induced vasodilation of retinal arterioles in diabetic rats. Heliyon, 2021, 7, e06532.	3.2	3
5	Metformin Protects against NMDA-Induced Retinal Injury through the MEK/ERK Signaling Pathway in Rats. International Journal of Molecular Sciences, 2021, 22, 4439.	4.1	15
6	Impairment of endothelium-dependent vasodilator function of retinal blood vessels in adult rats with a history of retinopathy of prematurity. Journal of Pharmacological Sciences, 2021, 146, 233-243.	2.5	1
7	Involvement of Gap Junctions in Acetylcholine-Induced Endothelium-Derived Hyperpolarization-Type Dilation of Retinal Arterioles in Rats. Biological and Pharmaceutical Bulletin, 2021, 44, 1860-1865.	1.4	0
8	Activation of transient receptor potential vanilloid 4 channels dilates rat retinal arterioles through nitric oxide- and BKCa channel-dependent mechanisms in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 35-41.	3.0	4
9	Changes in components of the neurovascular unit in the retina in a rat model of retinopathy of prematurity. Cell and Tissue Research, 2020, 379, 473-486.	2.9	4
10	The process of revascularization in the neonatal mouse retina following short-term blockade of vascular endothelial growth factor receptors. Cell and Tissue Research, 2020, 382, 529-549.	2.9	6
11	Involvement of Gi protein–dependent BKCa channel activation in β2-adrenoceptor-mediated dilation of retinal arterioles in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 2043-2052.	3.0	4
12	4-Aminopyridine, a Voltage-Gated K ⁺ Channel Inhibitor, Attenuates Nitric Oxide-Mediated Vasodilation of Retinal Arterioles in Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 1123-1127.	1.4	4
13	Abnormal Vascular Phenotypes Associated with the Timing of Interruption of Retinal Vascular Development in Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 859-863.	1.4	0
14	Attenuation of Retinal Endothelial Vasodilator Function in a Rat Model of Retinopathy of Prematurity. Current Eye Research, 2019, 44, 1360-1368.	1.5	1
15	Role of Neuron–Clia Signaling in Regulation of Retinal Vascular Tone in Rats. International Journal of Molecular Sciences, 2019, 20, 1952.	4.1	8
16	Involvement of matrix metalloproteinases in capillary degeneration following NMDA-induced neurotoxicity in the neonatal rat retina. Experimental Eye Research, 2019, 182, 101-108.	2.6	4
17	Probucol Slows the Progression of Cataracts in Streptozotocin-Induced Hyperglycemic Rats. Pharmacology, 2019, 103, 212-219.	2.2	4
18	Iron-chelating agents attenuate NMDA-Induced neuronal injury via reduction of oxidative stress in the rat retina. Experimental Eye Research, 2018, 171, 30-36.	2.6	33

#	Article	IF	CITATIONS
19	GYY4137, an Extended-Release Hydrogen Sulfide Donor, Reduces NMDA-Induced Neuronal Injury in the Murine Retina. Biological and Pharmaceutical Bulletin, 2018, 41, 657-660.	1.4	13
20	Establishment of an abnormal vascular patterning model in the mouse retina. Journal of Pharmacological Sciences, 2018, 136, 177-188.	2.5	10
21	Retinal neuronal cell loss prevents abnormal retinal vascular growth in a rat model of retinopathy of prematurity. Experimental Eye Research, 2018, 168, 115-127.	2.6	8
22	Transient phenotypic changes in endothelial cells and pericytes in neonatal mouse retina following shortâ€ŧerm blockade of vascular endothelial growth factor receptors. Developmental Dynamics, 2018, 247, 699-711.	1.8	3
23	Methylglyoxal Impairs β ₂ -Adrenoceptor-Mediated Vasodilatory Mechanisms in Rat Retinal Arterioles. Biological and Pharmaceutical Bulletin, 2018, 41, 272-276.	1.4	4
24	Role of Glial Cells in μ-Opioid Receptor-Mediated Vasodilation in the Rat Retina. Current Eye Research, 2018, 43, 350-356.	1.5	4
25	Anti-angiogenic effects of valproic acid in a mouse model of oxygen-induced retinopathy. Journal of Pharmacological Sciences, 2018, 138, 203-208.	2.5	11
26	Anti-cataract Effect of Resveratrol in High-Glucose-Treated Streptozotocin-Induced Diabetic Rats. Biological and Pharmaceutical Bulletin, 2018, 41, 1586-1592.	1.4	29
27	Brilliant Blue G protects against photoreceptor injury in a murine endotoxin-induced uveitis model. Experimental Eye Research, 2018, 177, 45-49.	2.6	5
28	A delay in vascularization induces abnormal astrocyte proliferation and migration in the mouse retina. Developmental Dynamics, 2017, 246, 186-200.	1.8	15
29	Anti-diabetic drug metformin dilates retinal blood vessels through activation of AMP-activated protein kinase in rats. European Journal of Pharmacology, 2017, 798, 66-71.	3.5	8
30	Stimulation of μ-opioid receptors dilates retinal arterioles by neuronal nitric oxide synthase-derived nitric oxide in rats. European Journal of Pharmacology, 2017, 803, 124-129.	3.5	10
31	MEK/ERK- and calcineurin/NFAT-mediated mechanism of cerebral hyperemia and brain injury following NMDA receptor activation. Biochemical and Biophysical Research Communications, 2017, 488, 329-334.	2.1	2
32	Stimulation of β1- and β2-adrenoceptors dilates retinal blood vessels in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 527-533.	3.0	7
33	l -Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway. Journal of Pharmacological Sciences, 2017, 133, 146-155.	2.5	8
34	Opioid receptor activation is involved in neuroprotection induced by TRPV1 channel activation against excitotoxicity in the rat retina. European Journal of Pharmacology, 2017, 812, 57-63.	3.5	12
35	Probucol prevents the attenuation of β2-adrenoceptor-mediated vasodilation of retinal arterioles in diabetic rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1247-1253.	3.0	5
36	Activation inhibitors of nuclear factor kappa B protect neurons against the NMDA-induced damage in the rat retina. Journal of Pharmacological Sciences, 2017, 135, 72-80.	2.5	24

#	Article	IF	CITATIONS
37	Mammalian Target of Rapamycin (mTOR) as a Potential Therapeutic Target in Pathological Ocular Angiogenesis. Biological and Pharmaceutical Bulletin, 2017, 40, 2045-2049.	1.4	29
38	Exposure to high oncentration oxygen in the neonatal period induces abnormal retinal vascular patterning in mice. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2016, 107, 216-224.	1.4	7
39	Apelin-36 is protective against N-methyl-D-aspartic-acid-induced retinal ganglion cell death in the mice. European Journal of Pharmacology, 2016, 791, 213-220.	3.5	21
40	Protective effects of PFâ€4708671 against <i>N</i> â€methylâ€ <scp>d</scp> â€aspartic acidâ€induced retinal damage in rats. Fundamental and Clinical Pharmacology, 2016, 30, 529-536.	1.9	4
41	Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Experimental Eye Research, 2016, 143, 120-131.	2.6	16
42	Effect of Long-Term Treatment of L-Ornithine on Visual Function and Retinal Histology in the Rats. Biological and Pharmaceutical Bulletin, 2015, 38, 139-143.	1.4	6
43	Preventive Effects of Rapamycin on Inflammation and Capillary Degeneration in a Rat Model of NMDA-Induced Retinal Injury. Biological and Pharmaceutical Bulletin, 2015, 38, 321-324.	1.4	14
44	Deferiprone Protects against Photoreceptor Degeneration Induced by Tunicamycin in the Rat Retina. Biological and Pharmaceutical Bulletin, 2015, 38, 1076-1080.	1.4	11
45	Vasodilator Effects of Elcatonin, a Synthetic Eel Calcitonin, on Retinal Blood Vessels in Rats. Biological and Pharmaceutical Bulletin, 2015, 38, 1536-1541.	1.4	1
46	Protective Effects of Everolimus against <i>N</i> -Methyl-D-aspartic Acid-Induced Retinal Damage in Rats. Biological and Pharmaceutical Bulletin, 2015, 38, 1765-1771.	1.4	13
47	Retinal region-dependent susceptibility of capillaries to high-concentration oxygen exposure and vascular endothelial growthÂfactor receptor inhibition in neonatal mice. Journal of Pharmacological Sciences, 2015, 129, 107-118.	2.5	4
48	Impaired retinal vasodilator response to acetylcholine in a rat model of NMDA-induced retinal degeneration. Journal of Pharmacological Sciences, 2015, 127, 211-216.	2.5	7
49	4-Hydroxy-2-nonenal attenuates β2-adrenoceptor-mediated vasodilation of rat retinal arterioles. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 575-582.	3.0	9
50	Structural and functional changes in retinal vasculature induced by retinal ischemia-reperfusion in rats. Experimental Eye Research, 2015, 135, 134-145.	2.6	53
51	Age-Dependent Changes in the Severity of Capillary Degeneration in Rat Retina Following <i>N</i> -Methyl-D-Aspartate-Induced Neurotoxicity. Current Eye Research, 2015, 40, 549-553.	1.5	11
52	P2X7 receptor antagonists protect against N-methyl-d-aspartic acid-induced neuronal injury in the rat retina. European Journal of Pharmacology, 2015, 756, 52-58.	3.5	30
53	High-mobility group Box-1 is involved in NMDA-induced retinal injury the in rat retina. Experimental Eye Research, 2015, 137, 63-70.	2.6	17
54	l-Citrulline dilates rat retinal arterioles via nitric oxide- and prostaglandin-dependent pathways inÂvivo. Journal of Pharmacological Sciences, 2015, 127, 419-423.	2.5	18

#	Article	IF	CITATIONS
55	Involvement of prostaglandin I2 in nitric oxide-induced vasodilation of retinal arterioles in rats. European Journal of Pharmacology, 2015, 764, 249-255.	3.5	16
56	Regression of retinal capillaries following <i>N</i> â€methylâ€Dâ€aspartateâ€induced neurotoxicity in the neonatal rat retina. Journal of Neuroscience Research, 2015, 93, 380-390.	2.9	13
57	Effects of mTOR inhibition on normal retinal vascular development in the mouse. Experimental Eye Research, 2014, 129, 127-134.	2.6	18
58	Treatment of Midâ€Pregnant Mice with KRN633, an Inhibitor of Vascular Endothelial Growth Factor Receptor Tyrosine Kinase, Induces Abnormal Retinal Vascular Patterning in Their Newborn Pups. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2014, 101, 293-299.	1.4	6
59	Activation of the TRPV1 channel attenuates N-methyl-d-aspartic acid-induced neuronal injury in the rat retina. European Journal of Pharmacology, 2014, 733, 13-22.	3.5	31
60	Rapamycin prevents <i>N</i> â€methylâ€Dâ€aspartateâ€induced retinal damage through an ERKâ€dependent mechanism in rats. Journal of Neuroscience Research, 2014, 92, 692-702.	2.9	20
61	Effects of pre- and post-natal treatment with KRN633, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, on retinal vascular development and patterning in mice. Experimental Eye Research, 2014, 120, 127-137.	2.6	18
62	Hydrogen sulfide attenuates NMDA-induced neuronal injury via its anti-oxidative activity in the rat retina. Experimental Eye Research, 2014, 120, 90-96.	2.6	41
63	Histological Protection by Nilvadipine against Neurotoxicity Induced by NOC12, a Nitric Oxide Donor, in the Rat Retina. Biological and Pharmaceutical Bulletin, 2014, 37, 306-310.	1.4	2
64	Treatment of Newborn Mice with Inhibitors of Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Induces Abnormal Retinal Vascular Patterning. Biological and Pharmaceutical Bulletin, 2014, 37, 1986-1989.	1.4	6
65	Anti-angiogenic Effects of Mammalian Target of Rapamycin Inhibitors in a Mouse Model of Oxygen-Induced Retinopathy. Biological and Pharmaceutical Bulletin, 2014, 37, 1838-1842.	1.4	42
66	Comparison of the Effects of Single Doses of Elcatonin and Pregabalin on Oxaliplatin-Induced Cold and Mechanical Allodynia in Rats. Biological and Pharmaceutical Bulletin, 2014, 37, 322-326.	1.4	22
67	ISO-1, a macrophage migration inhibitory factor antagonist, prevents N-methyl-d-aspartate-induced retinal damage. European Journal of Pharmacology, 2013, 718, 138-144.	3.5	14
68	Role of Vascular Endothelial Growth Factor in Maintenance of Pregnancy in Mice. Endocrinology, 2013, 154, 900-910.	2.8	16
69	Differential effects of LY294002 and wortmannin on neurons and vascular endothelial cells in the rat retina. Pharmacological Reports, 2013, 65, 854-862.	3.3	9
70	Protective effects of TGF-β inhibitors in a rat model of NMDA-induced retinal degeneration. European Journal of Pharmacology, 2013, 699, 188-193.	3.5	30
71	KRN633, an Inhibitor of Vascular Endothelial Growth Factor Receptor Tyrosine Kinase, Induces Intrauterine Growth Restriction in Mice. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2013, 98, 297-303.	1.4	5
72	Salmon Calcitonin Reduces Oxaliplatin-Induced Cold and Mechanical Allodynia in Rats. Biological and Pharmaceutical Bulletin, 2013, 36, 326-329.	1.4	10

#	Article	IF	CITATIONS
73	Agonist-Induced Receptor Internalization in Chinese Hamster Ovary Cells Stably Co-expressing β ₁ - and β ₂ -Adrenergic Receptors. Biological and Pharmaceutical Bulletin, 2013, 36, 114-119.	1.4	1
74	Neurovascular Interactions in the Retina: Physiological and Pathological Roles. Journal of Pharmacological Sciences, 2013, 123, 79-84.	2.5	43
75	The Relaxant Action of Nicorandil in Bovine Tracheal Smooth Muscle. Pharmacology, 2012, 89, 327-332.	2.2	3
76	Effect of Nafamostat on <i>N</i> -Methyl- <small>D</small> -aspartate-Induced Retinal Neuronal and Capillary Degeneration in Rats. Biological and Pharmaceutical Bulletin, 2012, 35, 2209-2213.	1.4	15
77	Protective effects of the β3-adrenoceptor agonist CL316243 against N-methyl-D-aspartate-induced retinal neurotoxicity. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 1077-1081.	3.0	19
78	Effect of synthetic eel calcitonin, elcatonin, on cold and mechanical allodynia induced by oxaliplatin and paclitaxel in rats. European Journal of Pharmacology, 2012, 696, 62-69.	3.5	13
79	Small Molecule Cyclin-Dependent Kinase Inhibitors Protect Against Neuronal Cell Death in the Ischemic-Reperfused Rat Retina. Journal of Ocular Pharmacology and Therapeutics, 2011, 27, 419-425.	1.4	22
80	BMS-191011, an Opener of Large-Conductance Ca2+-Activated Potassium Channels, Dilates Rat Retinal Arterioles in Vivo. Biological and Pharmaceutical Bulletin, 2011, 34, 150-152.	1.4	17
81	Rho-Rho Kinase Pathway Is Involved in the Protective Effect of Early Ischemic Preconditioning in the Rat Heart. Biological and Pharmaceutical Bulletin, 2011, 34, 156-159.	1.4	7
82	Involvement of Bradykinin in Trypsin-Induced Urinary Bladder Contraction in Cyclophosphamide-Treated Rats. Biological and Pharmaceutical Bulletin, 2011, 34, 1122-1125.	1.4	0
83	Resveratrol prevents bradykinin-induced contraction of rat urinary bladders by decreasing prostaglandin production and calcium influx. European Journal of Pharmacology, 2011, 666, 189-195.	3.5	10
84	Vasodilation of retinal arterioles induced by activation of BKCa channels is attenuated in diabetic rats. European Journal of Pharmacology, 2011, 669, 94-99.	3.5	25
85	Noradrenaline contracts rat retinal arterioles via stimulation of α1A- and α1D-adrenoceptors. European Journal of Pharmacology, 2011, 673, 65-69.	3.5	14
86	Role of calcium-activated potassium channels in acetylcholine-induced vasodilation of rat retinal arterioles in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 383, 27-34.	3.0	25
87	Role of β3-adrenoceptors in regulation of retinal vascular tone in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 384, 603-608.	3.0	24
88	Histological Protection by Donepezil Against Neurodegeneration Induced by Ischemia–Reperfusion in the Rat Retina. Journal of Pharmacological Sciences, 2010, 112, 327-335.	2.5	27
89	Hyperglycemia Impairs Acetylcholine-Induced Vasodilation of Retinal Arterioles Through Polyol Pathway–Independent Mechanisms in Rats. Journal of Pharmacological Sciences, 2010, 112, 336-342.	2.5	8
90	Pharmacological evidence for the presence of functional β3-adrenoceptors in rat retinal blood vessels. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 382, 119-126.	3.0	50

Κένμι δακαμότο

#	Article	IF	CITATIONS
91	Protective effect of all-trans retinoic acid on NMDA-induced neuronal cell death in rat retina. European Journal of Pharmacology, 2010, 635, 56-61.	3.5	26
92	Contribution of Cyclooxygenase-Dependent Mechanisms to Contractile Responses to Donepezil in the Rat Urinary Bladder. Pharmacology, 2010, 86, 281-286.	2.2	1
93	Retinal blood vessels are damaged in a rat model of NMDA-induced retinal degeneration. Neuroscience Letters, 2010, 485, 55-59.	2.1	42
94	Nitric oxide dilates rat retinal blood vessels by cyclooxygenase-dependent mechanisms. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R968-R977.	1.8	31
95	New mouse models for recessive retinitis pigmentosa caused by mutations in the Pde6a gene. Human Molecular Genetics, 2009, 18, 178-192.	2.9	61
96	Role of cyclooxygenase in vasodilation of retinal blood vessels induced by bradykinin in Brown Norway rats. Vascular Pharmacology, 2009, 51, 119-124.	2.1	13
97	The prostanoid EP2 receptor agonist ONO-AE1-259-01 protects against glutamate-induced neurotoxicity in rat retina. European Journal of Pharmacology, 2009, 616, 64-67.	3.5	26
98	Histological protection by cilnidipine, a dual L/N-type Ca2+ channel blocker, against neurotoxicity induced by ischemia–reperfusion in rat retina. Experimental Eye Research, 2009, 88, 974-982.	2.6	39
99	Vasodilator Effects of Ibudilast on Retinal Blood Vessels in Anesthetized Rats. Biological and Pharmaceutical Bulletin, 2009, 32, 1924-1927.	1.4	9
100	Vasodilator Effects of Flunarizine on Retinal Blood Vessels in Anesthetized Rats. Biological and Pharmaceutical Bulletin, 2009, 32, 2068-2071.	1.4	3
101	Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 376, 423-430.	3.0	23
102	β-Adrenoceptor-mediated vasodilation of retinal blood vessels is reduced in streptozotocin-induced diabetic rats. Vascular Pharmacology, 2008, 49, 77-83.	2.1	24
103	Attenuation of Cataract Progression by A-3922, a Dihydrobenzofuran Derivative, in Streptozotocin-Induced Diabetic Rats. Biological and Pharmaceutical Bulletin, 2008, 31, 1959-1963.	1.4	16
104	A Novel High Resolution In Vivo Digital Imaging System for the Evaluation of Experimental Cataract in Diabetic Rats. Journal of Pharmacological Sciences, 2008, 106, 144-151.	2.5	12
105	Effect of Nifedipine on Severe Experimental Cataract in Diabetic Rats. Journal of Pharmacological Sciences, 2008, 106, 651-658.	2.5	11
106	Intravenously Administered Vasodilatory Prostaglandins Increase Retinal and Choroidal Blood Flow in Rats. Journal of Pharmacological Sciences, 2007, 103, 103-112.	2.5	20
107	Vasodilation of Retinal Arteriole Mediated by Corticotropin-Releasing Factor Receptor is Impaired in Streptozotocin-Induced Diabetic Rats. Biological and Pharmaceutical Bulletin, 2007, 30, 985-989.	1.4	5
108	Vasodilator Effects of Fasudil, a Rho-Kinase Inhibitor, on Retinal Arterioles in Stroke-Prone Spontaneously Hypertensive Rats. Journal of Ocular Pharmacology and Therapeutics, 2007, 23, 207-212.	1.4	28

#	Article	IF	CITATIONS
109	Stimulation of prostanoid IP and EP2 receptors dilates retinal arterioles and increases retinal and choroidal blood flow in rats. European Journal of Pharmacology, 2007, 570, 135-141.	3.5	60
110	Attenuation of nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles induced by acetylcholine in streptozotocin-treated rats. Vascular Pharmacology, 2007, 46, 153-159.	2.1	52
111	Vasodilator effect of nicorandil on retinal blood vessels in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2007, 375, 323-328.	3.0	23
112	From Vivarium to Bedside: Lessons Learned from Animal Models. Ophthalmic Genetics, 2006, 27, 123-137.	1.2	3
113	Vasodilator Effects of Adrenomedullin on Retinal Arterioles in Streptozotocin-Induced Diabetic Rats. Journal of Ocular Pharmacology and Therapeutics, 2006, 22, 317-322.	1.4	27
114	Inducible nitric oxide synthase inhibitors abolished histological protection by late ischemic preconditioning in rat retina. Experimental Eye Research, 2006, 82, 512-518.	2.6	42
115	Disappearance of Glibenclamide-Induced Hypoglycemia in Wistar-Kyoto Rats. Biological and Pharmaceutical Bulletin, 2006, 29, 574-576.	1.4	6
116	Involvement of the Î ² Î ³ subunits of G proteins in the cAMP response induced by stimulation of the histamine H1 receptor. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 372, 153-159.	3.0	28
117	Diphenylamine-2-carboxylic acid potentiates the cyclic nucleotides-mediated relaxation of porcine coronary artery: possible involvement of the inhibitory effect on the efflux of cyclic nucleotides. Vascular Pharmacology, 2004, 41, 21-25.	2.1	2
118	Characterization of mexiletine as an antagonist of β-adrenoceptor in Chinese hamster ovary cells expressing cloned human β-adrenoceptors. Biochemical Pharmacology, 2004, 67, 815-822.	4.4	3
119	Histological protection against ischemia–reperfusion injury by early ischemic preconditioning in rat retina. Brain Research, 2004, 1015, 154-160.	2.2	37
120	Protease-activated receptor-2-mediated contraction of urinary bladder is enhanced in cyclophosphamide-treated rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 212-219.	3.0	16
121	Influence of Receptor Number on the cAMP Response to Forskolin in Chinese Hamster Ovary Cells Transfected with Human .BETA.2-Adrenoceptor. Biological and Pharmaceutical Bulletin, 2004, 27, 239-241.	1.4	5
122	MaxiK channel-triggered negative feedback system is preserved in the urinary bladder smooth muscle from streptozotocin-induced diabetic rats. Journal of Smooth Muscle Research, 2004, 40, 97-109.	1.2	11
123	Role of the M2 muscarinic receptor pathway in lidocaine-induced potentiation of the relaxant response to atrial natriuretic peptide in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 76-79.	3.0	6
124	Protease-activated receptor-2-mediated contraction in the rat urinary bladder: the role of urinary bladder mucosa. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 211-213.	3.0	18
125	Possible involvement of Ca2+-independent phospholipase A2 in protease-activated receptor-2-mediated contraction of rat urinary bladder. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 588-591.	3.0	17
126	The role of cholinesterases in rat urinary bladder contractility. Urological Research, 2003, 31, 223-226.	1.5	11

#	Article	IF	CITATIONS
127	Expression of multidrug resistance protein 4 and 5 in the porcine coronary and pulmonary arteries. European Journal of Pharmacology, 2003, 466, 223-224.	3.5	10
128	Augmentation of rat urinary bladder relaxation mediated by β1-adrenoceptors in experimental diabetes. European Journal of Pharmacology, 2003, 467, 191-195.	3.5	18
129	Relaxant effect of YM976, a novel phosphodiesterase 4 inhibitor, on bovine tracheal smooth muscle. European Journal of Pharmacology, 2003, 470, 57-64.	3.5	7
130	Lidocaine attenuates muscarinic receptor-mediated inhibition of adenylyl cyclase in airway smooth muscle. European Journal of Pharmacology, 2003, 470, 65-71.	3.5	6
131	Differences in protective profiles of diltiazem isomers in ischemic and reperfused guinea pig hearts. European Journal of Pharmacology, 2002, 434, 125-131.	3.5	2
132	Relaxation and potentiation of cGMP-mediated response by ibudilast in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 262-269.	3.0	8
133	Inhibitory mechanism of BRL37344 on muscarinic receptor-mediated contractions of the rat urinary bladder smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 198-203.	3.0	21
134	Stimulation of muscarinic M 2 receptors inhibits atrial natriuretic peptide-mediated relaxation in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 376-379.	3.0	3
135	Late preconditioning in rat retina: involvement of adenosine and ATP-sensitive K+ channel. European Journal of Pharmacology, 2001, 418, 89-93.	3.5	27
136	Energy Preserving Effect of l-cis Diltiazem in Isolated Ischemic and Reperfused Guinea Pig Hearts. A 31P-NMR Study The Japanese Journal of Pharmacology, 2000, 83, 225-232.	1.2	8
137	Energy Preserving Effect of l-cis Diltiazem in Isolated Ischemic and Reperfused Guinea Pig Hearts: A 31P-NMR Study. The Japanese Journal of Pharmacology, 2000, 83, 225-232.	1.2	5
138	Translocation of HSP27 to Sarcomere Induced by Ischemic Preconditioning in Isolated Rat Hearts. Biochemical and Biophysical Research Communications, 2000, 269, 137-142.	2.1	56
139	l-cis Diltiazem attenuates intracellular Ca2+ overload by metabolic inhibition in guinea pig myocytes. European Journal of Pharmacology, 1999, 385, 225-230.	3.5	9
140	Treatment With 1-cis Diltiazem Before Reperfusion Reduces Infarct Size in the Ischemic Rabbit Heart In Vivo. The Japanese Journal of Pharmacology, 1999, 80, 319-326.	1.2	3
141	Translocation of HSP27 to Cytoskeleton by Repetitive Hypoxia-Reoxygenation in the Rat Myoblast Cell Line, H9c2. Biochemical and Biophysical Research Communications, 1998, 251, 576-579.	2.1	27
142	5-Hydroxydecanoate selectively reduces the initial increase in extracellular K+ in ischemic guinea-pig heart. European Journal of Pharmacology, 1998, 348, 31-35.	3.5	21
143	Diltiazem Inhibits the Late Increase in Extracellular Potassium by Maintaining Glycolytic ATP Synthesis During Myocardial Ischemia. Journal of Cardiovascular Pharmacology, 1997, 30, 424-430.	1.9	11