
Kun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7815545/publications.pdf Version: 2024-02-01

KUN MANC

#	Article	IF	CITATIONS
1	Challenges to the Stability of Active Layer Materials in Organic Solar Cells. Macromolecular Rapid Communications, 2020, 41, e1900437.	2.0	55
2	Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content. ACS Applied Materials & amp; Interfaces, 2015, 7, 24686-24693.	4.0	26
3	Enhanced short circuit current density and efficiency of ternary organic solar cells by addition of a simple copolymer third component. Chemical Engineering Journal, 2021, 425, 130575.	6.6	17
4	Optimizing the Alkyl Side-Chain Design of a Wide Band-Gap Polymer Donor for Attaining Nonfullerene Organic Solar Cells with High Efficiency Using a Nonhalogenated Solvent. Chemistry of Materials, 2021, 33, 5981-5990.	3.2	15
5	Broad Bandgap D–A Copolymer Based on Bithiazole Acceptor Unit for Application in Highâ€Performance Polymer Solar Cells with Lower Fullerene Content. Macromolecular Rapid Communications, 2016, 37, 1066-1073.	2.0	10
6	A small molecule acceptor with a heptacyclic benzodi(thienocyclopentafuran) central unit achieving 13.4% efficiency in polymer solar cells with low energy loss. Journal of Materials Chemistry C, 2021, 9, 2744-2751.	2.7	10
7	Ultra-narrow bandgap D-A copolymer based on thienoisoindigo acceptor unit for application in polymer solar cells with energy losses below 0.6 eV. Synthetic Metals, 2016, 220, 134-140.	2.1	8
8	Synthesis of organic molecule donor for efficient organic solar cells with low acceptor content. Organic Electronics, 2019, 64, 54-61.	1.4	8
9	Synthesis and photovoltaic properties of a 2D-conjugated copolymer based on benzodithiophene with alkylthio-selenophene side chain. RSC Advances, 2016, 6, 14229-14235.	1.7	6
10	A New Smallâ€Molecule Donor Containing Nonâ€Fused Ring Ï€â€Bridge Enables Efficient Organic Solar Cells with High Open Circuit Voltage and Low Acceptor Content. ChemPhysChem, 2019, 20, 2674-2682.	1.0	5
11	Influence of Alkyl Substitution Position on Wideâ€Bandgap Polymers in Highâ€Efficiency Nonfullerene Polymer Solar Cells. Macromolecular Rapid Communications, 2020, 41, e2000170.	2.0	5