JoaquÃ-n Gómez-Estaca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7814995/publications.pdf

Version: 2024-02-01

59 papers

4,892 citations

34 h-index 57 g-index

60 all docs

60 does citations

60 times ranked

5064 citing authors

#	Article	IF	CITATIONS
1	Characterization of glucose-crosslinked gelatin films reinforced with chitin nanowhiskers for active packaging development. LWT - Food Science and Technology, 2022, 154, 112833.	2.5	17
2	Drying soy phosphatidylcholine liposomal suspensions in alginate matrix: Effect of drying methods on physico-chemical properties and stability. Food Hydrocolloids, 2021, 111, 106357.	5.6	8
3	Protein Hydrolysis and Glycosylation as Strategies to Produce Bioactive Ingredients from Unmarketable Prawns. Foods, 2021, 10, 2844.	1.9	1
4	Functional aptitude of hake minces with added TMAO-demethylase inhibitors during frozen storage. Food Chemistry, 2020, 309, 125683.	4.2	7
5	The effect of household storage and cooking practices on quality attributes of pork burgers formulated with PUFA- and curcumin-loaded oleogels as healthy fat substitutes. LWT - Food Science and Technology, 2020, 119, 108909.	2.5	45
6	Recent Advances in Astaxanthin Micro/Nanoencapsulation to Improve Its Stability and Functionality as a Food Ingredient. Marine Drugs, 2020, 18, 406.	2.2	59
7	The Effect of Emulsifying Protein and Addition of Condensed Tannins on n-3 PUFA Enriched Emulsions for Functional Foods. Foods, 2020, 9, 1589.	1.9	4
8	Rheological Evaluation of Ethyl Cellulose and Beeswax Oleogels as Fat Replacers in Meat Products. Springer Proceedings in Materials, 2020, , 64-68.	0.1	0
9	Assessment of a healthy oil combination structured in ethyl cellulose and beeswax oleogels as animal fat replacers in low-fat, PUFA-enriched pork burgers. Food and Bioprocess Technology, 2019, 12, 1068-1081.	2.6	58
10	Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid p \tilde{A} \hat{C} \hat{C} 0 development. Food Hydrocolloids, 2019, 87, 960-969.	5.6	146
11	Bioaccessibility and antimicrobial properties of a shrimp demineralization extract blended with chitosan as wrapping material in ready-to-eat raw salmon. Food Chemistry, 2019, 276, 342-349.	4.2	21
12	Upgrading collagenous smooth hound by-products: Effect of hydrolysis conditions, in vitro gastrointestinal digestion and encapsulation on bioactive properties. Food Bioscience, 2019, 28, 99-108.	2.0	16
13	Chemical characterization of wash water biomass from shrimp surimi processing and its application to develop functional edible films. Journal of Food Science and Technology, 2018, 55, 3881-3891.	1.4	5
14	Bioactive and technological functionality of a lipid extract from shrimp (L. vannamei) cephalothorax. LWT - Food Science and Technology, 2018, 89, 704-711.	2.5	20
15	The effect of the combined use of high pressure treatment and antimicrobial edible film on the quality of salmon carpaccio. International Journal of Food Microbiology, 2018, 283, 28-36.	2.1	29
16	Emulsion gels containing n-3 fatty acids and condensed tannins designed as functional fat replacers. Food Research International, 2018, 113, 465-473.	2.9	30
17	Physico-Chemical Properties, Stability, and Potential Food Applications of Shrimp Lipid Extract Encapsulated by Complex Coacervation. Food and Bioprocess Technology, 2018, 11, 1596-1604.	2.6	25
18	Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocolloids, 2017, 70, 313-320.	5.6	104

#	Article	IF	CITATIONS
19	Characterization and storage stability of astaxanthin esters, fatty acid profile and \hat{l}_{\pm} -tocopherol of lipid extract from shrimp (L. vannamei) waste with potential applications as food ingredient. Food Chemistry, 2017, 216, 37-44.	4.2	83
20	Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin–cashew gum complex. Food Hydrocolloids, 2016, 61, 155-162.	5 . 6	98
21	Obtaining of functional components from cooked shrimp (Penaeus vannamei) by enzymatic hydrolysis. Food Bioscience, 2016, 15, 55-63.	2.0	28
22	Effect of different polysaccharides and crosslinkers on echium oil microcapsules. Carbohydrate Polymers, 2016, 150, 319-329.	5.1	40
23	The Potential of Proteins for Producing Food Packaging Materials: A Review. Packaging Technology and Science, 2016, 29, 203-224.	1.3	91
24	The effect of high-pressure treatment on functional components of shrimp (Litopenaeus vannamei) cephalothorax. Innovative Food Science and Emerging Technologies, 2016, 34, 154-160.	2.7	21
25	Microcapsules containing astaxanthin from shrimp waste as potential food coloring and functional ingredient: Characterization, stability, and bioaccessibility. LWT - Food Science and Technology, 2016, 70, 229-236.	2,5	59
26	Characteristics and functional properties of gelatin extracted from squid (Loligo vulgaris) skin. LWT - Food Science and Technology, 2016, 65, 924-931.	2.5	53
27	Development, properties, and stability of antioxidant shrimp muscle protein films incorporating carotenoid-containing extracts from food by-products. LWT - Food Science and Technology, 2015, 64, 189-196.	2.5	34
28	Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Science and Emerging Technologies, 2015, 29, 302-307.	2.7	108
29	The effect of combined traditional and novel treatments on oxidative status of dolphinfish (<i>Coryphaena hippurus</i>) and sardine (<i>Sardina pilchardus</i>) muscle lipids. Food Science and Technology International, 2014, 20, 431-440.	1.1	9
30	Effect of thermo-pressing temperature on the functional properties of Abioplastics made from a renewable wheat gliadin resin. LWT - Food Science and Technology, 2014, 56, 161-167.	2.5	15
31	Shrimp (Litopenaeus vannamei) muscle proteins as source to develop edible films. Food Hydrocolloids, 2014, 41, 86-94.	5. 6	47
32	Advances in antioxidant active food packaging. Trends in Food Science and Technology, 2014, 35, 42-51.	7.8	445
33	Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin. International Journal of Food Microbiology, 2014, 173, 62-71.	2.1	52
34	Chemically modified gliadins as sustained release systems for lysozyme. Food Hydrocolloids, 2014, 41, 53-59.	5.6	42
35	Migrants determination and bioaccessibility study of ethyl lauroyl arginate (LAE) from a LAE based antimicrobial food packaging material. Food and Chemical Toxicology, 2013, 56, 363-370.	1.8	26
36	Active antimicrobial food and beverage packaging. , 2012, , 27-54.		14

#	Article	IF	CITATIONS
37	Functionality of Lactobacillus acidophilus and Bifidobacterium bifidum incorporated to edible coatings and films. Innovative Food Science and Emerging Technologies, 2012, 16, 277-282.	2.7	71
38	Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chemistry, 2012, 131, 1376-1384.	4.2	198
39	Role of sepiolite in the release of active compounds from gelatin–egg white films. Food Hydrocolloids, 2012, 27, 475-486.	5.6	68
40	Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocolloids, 2012, 28, 82-91.	5.6	274
41	Functional Properties of Bioplastics Made from Wheat Gliadins Modified with Cinnamaldehyde. Journal of Agricultural and Food Chemistry, 2011, 59, 6689-6695.	2.4	87
42	Biochemical Properties of Bioplastics Made from Wheat Gliadins Cross-Linked with Cinnamaldehyde. Journal of Agricultural and Food Chemistry, 2011, 59, 13212-13220.	2.4	44
43	Oxidative stability, volatile components and polycyclic aromatic hydrocarbons of cold-smoked sardine (Sardina pilchardus) and dolphinfish (Coryphaena hippurus). LWT - Food Science and Technology, 2011, 44, 1517-1524.	2.5	23
44	Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin–chitosan films. Food Hydrocolloids, 2011, 25, 1461-1469.	5.6	184
45	Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 2010, 27, 889-896.	2.1	534
46	Influence of frozen storage on aptitude of sardine and dolphinfish for cold-smoking process. LWT - Food Science and Technology, 2010, 43, 1246-1252.	2.5	10
47	Physico-chemical and film forming properties of giant squid (Dosidicus gigas) gelatin. Food Hydrocolloids, 2009, 23, 585-592.	5.6	68
48	Improvement of the antioxidant properties of squid skin gelatin films by the addition of hydrolysates from squid gelatin. Food Hydrocolloids, 2009, 23, 1322-1327.	5.6	88
49	Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocolloids, 2009, 23, 1334-1341.	5.6	92
50	Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. Journal of Food Engineering, 2009, 92, 78-85.	2.7	182
51	Alternative fish species for coldâ€smoking process. International Journal of Food Science and Technology, 2009, 44, 1525-1535.	1.3	28
52	Physico-chemical and film-forming properties of bovine-hide and tuna-skin gelatin: A comparative study. Journal of Food Engineering, 2009, 90, 480-486.	2.7	135
53	Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chemistry, 2009, 112, 18-25.	4.2	201
54	Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science and Technology, 2009, 20, 3-16.	7.8	394

#	Article	IF	CITATIONS
55	High pressure technology as a tool to obtain high quality carpaccio and carpaccio-like products from fish. Innovative Food Science and Emerging Technologies, 2009, 10, 148-154.	2.7	33
56	Antimicrobial Activity of Composite Edible Films Based on Fish Gelatin and Chitosan Incorporated with Clove Essential Oil. Journal of Aquatic Food Product Technology, 2009, 18, 46-52.	0.6	69
57	Influence of Salt, Smoke, and High Pressure on Growth of Listeria monocytogenes and Spoilage Microflora in Cold-Smoked Dolphinfish (Coryphaena hippurus). Journal of Food Protection, 2007, 70, 399-404.	0.8	25
58	High pressure effects on the quality and preservation of cold-smoked dolphinfish (Coryphaena) Tj ETQq0 0 0 rgBT	/Overlock 4.2	10 Tf 50 62
59	Effect of functional edible films and high pressure processing on microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchardus). Food Chemistry, 2007, 105, 511-520.	4.2	181