List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7814959/publications.pdf Version: 2024-02-01

	36271	23514
12,737	51	111
citations	h-index	g-index
131	131	16033
docs citations	times ranked	citing authors
	citations 131	12,737 51 citations h-index 131 131

#	Article	IF	CITATIONS
1	Mice Deficient in Cellular Glutathione Peroxidase Show Increased Vulnerability to Malonate, 3-Nitropropionic Acid, and 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine. Journal of Neuroscience, 2000, 20, 1-7.	1.7	2,029
2	Oxidative stress in neurodegeneration: cause or consequence?. Nature Medicine, 2004, 10, S18-S25.	15.2	1,562
3	Genetic or Pharmacological Iron Chelation Prevents MPTP-Induced Neurotoxicity In Vivo. Neuron, 2003, 37, 899-909.	3.8	594
4	Glutathione, iron and Parkinson's disease. Biochemical Pharmacology, 2002, 64, 1037-1048.	2.0	372
5	Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neuroscience Letters, 2010, 486, 235-239.	1.0	350
6	Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson's Disease. Cell Reports, 2018, 22, 930-940.	2.9	342
7	Cellular senescence: A link between cancer and age-related degenerative disease?. Seminars in Cancer Biology, 2011, 21, 354-9.	4.3	339
8	Caspase-9 Activation Results in Downstream Caspase-8 Activation and Bid Cleavage in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinson's Disease. Journal of Neuroscience, 2001, 21, 9519-9528.	1.7	282
9	Dopaminergic neurons. International Journal of Biochemistry and Cell Biology, 2005, 37, 942-946.	1.2	256
10	Redox imbalance in Parkinson's disease. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1362-1367.	1.1	232
11	MAO-B Elevation in Mouse Brain Astrocytes Results in Parkinson's Pathology. PLoS ONE, 2008, 3, e1616.	1.1	230
12	Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. Journal of Neurochemistry, 2005, 93, 1030-1037.	2.1	229
13	Cellular senescence and the aging brain. Experimental Gerontology, 2015, 68, 3-7.	1.2	218
14	The Herbicide Paraquat Induces Dopaminergic Nigral Apoptosis through Sustained Activation of the JNK Pathway. Journal of Biological Chemistry, 2004, 279, 32626-32632.	1.6	203
15	Oxidative and nitrative protein modifications in Parkinson's disease. Free Radical Biology and Medicine, 2008, 44, 1787-1794.	1.3	172
16	Time to Talk SENS: Critiquing the Immutability of Human Aging. Annals of the New York Academy of Sciences, 2002, 959, 452-462.	1.8	152
17	Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: Implications for Parkinson's disease. Free Radical Biology and Medicine, 2012, 53, 993-1003.	1.3	152
18	Superoxide Dismutase/Catalase Mimetics Are Neuroprotective against Selective Paraquat-mediated Dopaminergic Neuron Death in the Substantial Nigra. Journal of Biological Chemistry, 2005, 280, 29194-29198.	1.6	146

#	Article	IF	CITATIONS
19	Inducible Alterations of Glutathione Levels in Adult Dopaminergic Midbrain Neurons Result in Nigrostriatal Degeneration. Journal of Neuroscience, 2007, 27, 13997-14006.	1.7	131
20	Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson's disease?. Journal of Internal Medicine, 2013, 273, 429-436.	2.7	131
21	Herpesvirus-mediated gene delivery into the rat brain: specificity and efficiency of the neuron-specific enolase promoter. Cellular and Molecular Neurobiology, 1993, 13, 503-515.	1.7	128
22	Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiology of Aging, 2007, 28, 907-913.	1.5	127
23	Iron and Paraquat as Synergistic Environmental Risk Factors in Sporadic Parkinson's Disease Accelerate Age-Related Neurodegeneration. Journal of Neuroscience, 2007, 27, 6914-6922.	1.7	119
24	Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: Implications for Parkinson's disease. Free Radical Biology and Medicine, 2006, 41, 1442-1448.	1.3	114
25	Mitochondrial DNA damage Is associated with reduced mitochondrial bioenergetics in Huntington's disease. Free Radical Biology and Medicine, 2012, 53, 1478-1488.	1.3	112
26	Oxidative α-Ketoglutarate Dehydrogenase Inhibition via Subtle Elevations in Monoamine Oxidase B Levels Results in Loss of Spare Respiratory Capacity. Journal of Biological Chemistry, 2003, 278, 46432-46439.	1.6	110
27	Does cellular iron dysregulation play a causative role in Parkinson's disease?. Ageing Research Reviews, 2004, 3, 327-343.	5.0	110
28	Mitochondrial Quality Control via the PGC1α-TFEB Signaling Pathway Is Compromised by Parkin Q311X Mutation But Independently Restored by Rapamycin. Journal of Neuroscience, 2015, 35, 12833-12844.	1.7	108
29	Preferentially Increased Nitration of α-Synuclein at Tyrosine-39 in a Cellular Oxidative Model of Parkinson's Disease. Analytical Chemistry, 2009, 81, 7823-7828.	3.2	103
30	Mitochondrial Complex I Inhibition in Parkinson's Disease: How Can Curcumin Protect Mitochondria?. Antioxidants and Redox Signaling, 2007, 9, 399-408.	2.5	101
31	Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson's disease. Journal of Neurochemistry, 2005, 92, 1091-1103.	2.1	100
32	Inhibition of Prolyl Hydroxylase Protects against 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Neurotoxicity. Journal of Biological Chemistry, 2009, 284, 29065-29076.	1.6	86
33	The Role of c-Jun N-Terminal Kinase (JNK) in Parkinson's Disease. IUBMB Life, 2003, 55, 267-271.	1.5	82
34	Nitrosylation and nitration of mitochondrial complex I in Parkinson's disease. Free Radical Research, 2011, 45, 53-58.	1.5	81
35	A Disruption in Iron-Sulfur Center Biogenesis via Inhibition of Mitochondrial Dithiol Glutaredoxin 2 May Contribute to Mitochondrial and Cellular Iron Dysregulation in Mammalian Glutathione-Depleted Dopaminergic Cells: Implications for Parkinson's Disease. Antioxidants and Redox Signaling, 2009, 11, 2083-2094.	2.5	77
36	mTORC2: The other mTOR in autophagy regulation. Aging Cell, 2021, 20, e13431.	3.0	76

#	Article	IF	CITATIONS
37	Iron Dysregulation and Neurodegeneration: The Molecular Connection. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2006, 6, 89-97.	3.4	75
38	Sembragiline: A Novel, Selective Monoamine Oxidase Type B Inhibitor for the Treatment of Alzheimer's Disease. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 413-423.	1.3	72
39	Perspectives on MAO-B in Aging and Neurological Disease: Where Do We Go From Here?. Molecular Neurobiology, 2004, 30, 077-090.	1.9	70
40	Does neuronal loss in Parkinson's disease involve programmed cell death?. BioEssays, 2001, 23, 640-646.	1.2	68
41	Glutathione decreases in dopaminergic PC12 cells interfere with the ubiquitin protein degradation pathway: relevance for Parkinson's disease?. Journal of Neurochemistry, 2002, 80, 555-561.	2.1	66
42	Anti-Inflammatory Role of the Isoflavone Diadzein in Lipopolysaccharide-Stimulated Microglia: Implications for Parkinson's Disease. Neurotoxicity Research, 2013, 23, 145-153.	1.3	64
43	Decreased Glutathione Results in Calcium-Mediated Cell Death in PC12. Free Radical Biology and Medicine, 1997, 23, 1055-1066.	1.3	63
44	Fibroblast growth factor 2 enhances striatal and nigral neurogenesis in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neuroscience, 2008, 153, 664-670.	1.1	63
45	Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation. Free Radical Biology and Medicine, 2009, 46, 312-320.	1.3	63
46	Iron elevations in the aging Parkinsonian brain: a consequence of impaired iron homeostasis?. Journal of Neurochemistry, 2010, 112, 332-339.	2.1	61
47	Reactive oxygen species regulation by AIF- and complex I-depleted brain mitochondria. Free Radical Biology and Medicine, 2009, 46, 939-947.	1.3	58
48	Age-Related Behavioral Phenotype of an Astrocytic Monoamine Oxidase-B Transgenic Mouse Model of Parkinson's Disease. PLoS ONE, 2013, 8, e54200.	1.1	58
49	Alpha synuclein aggregation: is it the toxic gain of function responsible for neurodegeneration in Parkinson's disease?. Mechanisms of Ageing and Development, 2001, 122, 1499-1510.	2.2	57
50	Iron promotes protein insolubility and aging in C. elegans. Aging, 2014, 6, 975-988.	1.4	57
51	Brain Î ³ -glutamyl cysteine synthetase (GCS) mRNA expression patterns correlate with regional-specific enzyme activities and glutathione levels. Journal of Neuroscience Research, 1999, 58, 436-441.	1.3	56
52	Lithium protects against oxidative stressâ€mediated cell death in αâ€synucleinâ€overexpressing in vitro and in vivo models of Parkinson's disease. Journal of Neuroscience Research, 2011, 89, 1666-1675.	1.3	55
53	Quantitative Mapping of Reversible Mitochondrial Complex I Cysteine Oxidation in a Parkinson Disease Mouse Model. Journal of Biological Chemistry, 2011, 286, 7601-7608.	1.6	54
54	Iron dysregulation and Parkinson's disease. Journal of Alzheimer's Disease, 2005, 6, S47-S52.	1.2	53

#	Article	IF	CITATIONS
55	Genetic iron chelation protects against proteasome inhibition-induced dopamine neuron degeneration. Neurobiology of Disease, 2010, 37, 307-313.	2.1	50
56	Regulation of ATP13A2 via PHD2-HIF1α Signaling Is Critical for Cellular Iron Homeostasis: Implications for Parkinson's Disease. Journal of Neuroscience, 2016, 36, 1086-1095.	1.7	50
57	Coupling Endoplasmic Reticulum Stress to the Cell Death Program in Dopaminergic Cells: Effect of Paraquat. NeuroMolecular Medicine, 2008, 10, 333-342.	1.8	49
58	Anti-Inflammatory and Neuroprotective Role of Natural Product Securinine in Activated Glial Cells: Implications for Parkinson's Disease. Mediators of Inflammation, 2017, 2017, 1-11.	1.4	49
59	Clutathione depletion in immortalized midbrain-derived dopaminergic neurons results in increases in the labile iron pool: Implications for Parkinson's disease. Free Radical Biology and Medicine, 2009, 46, 593-598.	1.3	48
60	Stress, Aging, and Neurodegenerative Disorders: Molecular Mechanismsa. Annals of the New York Academy of Sciences, 1998, 851, 429-443.	1.8	47
61	Rapid Purification and Mass Spectrometric Characterization of Mitochondrial NADH Dehydrogenase (Complex I) from Rodent Brain and a Dopaminergic Neuronal Cell Line. Molecular and Cellular Proteomics, 2005, 4, 84-96.	2.5	47
62	Nigrostriatal Dopaminergic Neurodegeneration in the Weaver Mouse Is Mediated via Neuroinflammation and Alleviated by Minocycline Administration. Journal of Neuroscience, 2006, 26, 11644-11651.	1.7	47
63	Role of HIF-1 in Iron Regulation: Potential Therapeutic Strategy for Neurodegenerative Disorders. Current Molecular Medicine, 2006, 6, 883-893.	0.6	46
64	Chronic expression of H-ferritin in dopaminergic midbrain neurons results in an age-related expansion of the labile iron pool and subsequent neurodegeneration: implications for Parkinson's disease. Brain Research, 2009, 1297, 17-22.	1.1	46
65	Intrinsic Bioenergetic Properties and Stress Sensitivity of Dopaminergic Synaptosomes. Journal of Neuroscience, 2011, 31, 4524-4534.	1.7	46
66	Ironing out Parkinson's disease: is therapeutic treatment with iron chelators a real possibility?. Aging Cell, 2002, 1, 17-21.	3.0	43
67	Synergistic effects of environmental risk factors and gene mutations in Parkinson's disease accelerate ageâ€related neurodegeneration. Journal of Neurochemistry, 2010, 115, 1363-1373.	2.1	41
68	Catecholamine metabolism drives generation of mitochondrial DNA deletions in dopaminergic neurons. Brain, 2014, 137, 354-365.	3.7	41
69	Manganese disturbs metal and protein homeostasis in Caenorhabditis elegans. Metallomics, 2014, 6, 1816-1823.	1.0	41
70	In vitro and in vivo neuroprotection by γ-glutamylcysteine ethyl ester against MPTP: Relevance to the role of glutathione in Parkinson's disease. Neuroscience Letters, 2006, 402, 137-141.	1.0	40
71	Up-regulation of Î ³ -glutamyl transpeptidase activity following glutathione depletion has a compensatory rather than an inhibitory effect on mitochondrial complex I activity: implications for Parkinson's disease. Free Radical Biology and Medicine, 2006, 40, 1557-1563.	1.3	40
72	Caspase 3 inhibition attenuates hydrogen peroxide-induced DNA fragmentation but not cell death in neuronal PC12 cells. Journal of Neurochemistry, 2001, 76, 1745-1755.	2.1	39

#	Article	IF	CITATIONS
73	Elevated expression of glutathione peroxidase in PC12 cells results in protection against methamphetamine but not MPTP toxicity. Molecular Brain Research, 1997, 46, 154-160.	2.5	37
74	Paraquat and iron exposure as possible synergistic environmental risk factors in Parkinson's disease. Neurotoxicity Research, 2003, 5, 307-313.	1.3	37
75	Metabolic Control Analysis in a Cellular Model of Elevated MAO-B: Relevance to Parkinson's Disease. Neurotoxicity Research, 2009, 16, 186-193.	1.3	37
76	Mao-B elevation decreases parkin's ability to efficiently clear damaged mitochondria: protective effects of rapamycin. Free Radical Research, 2012, 46, 1011-1018.	1.5	37
77	Chronic ferritin expression within murine dopaminergic midbrain neurons results in a progressive age-related neurodegeneration. Brain Research, 2007, 1140, 188-194.	1.1	36
78	Senescence as an Amyloid Cascade: The Amyloid Senescence Hypothesis. Frontiers in Cellular Neuroscience, 2020, 14, 129.	1.8	35
79	Late-life hemoglobin and the incidence of Parkinson's disease. Neurobiology of Aging, 2012, 33, 914-920.	1.5	33
80	A DNA synthesis inhibitor is protective against proteotoxic stressors via modulation of fertility pathways in Caenorhabditis elegans. Aging, 2013, 5, 759-769.	1.4	33
81	What causes the build-up of ubiquitin-containing inclusions in Parkinson's disease?. Mechanisms of Ageing and Development, 2000, 118, 15-22.	2.2	31
82	Dopamine D ₂ /D ₃ Agonists with Potent Iron Chelation, Antioxidant and Neuroprotective Properties: Potential Implication in Symptomatic and Neuroprotective Treatment of Parkinson's Disease. ChemMedChem, 2011, 6, 991-995.	1.6	31
83	A novel iron (II) preferring dopamine agonist chelator D-607 significantly suppresses α-syn- and MPTP-induced toxicities inÂvivo. Neuropharmacology, 2017, 123, 88-99.	2.0	31
84	Dysregulated iron metabolism in C. elegans catp-6/ATP13A2 mutant impairs mitochondrial function. Neurobiology of Disease, 2020, 139, 104786.	2.1	30
85	The mitochondrial permeability transition pore activates the mitochondrial unfolded protein response and promotes aging. ELife, 2021, 10, .	2.8	30
86	Ability to delay neuropathological events associated with astrocytic MAO-B increase in a Parkinsonian mouse model: Implications for early intervention on disease progression. Neurobiology of Disease, 2010, 40, 444-448.	2.1	29
87	Alpha-Synuclein Preformed Fibrils Induce Cellular Senescence in Parkinson's Disease Models. Cells, 2021, 10, 1694.	1.8	29
88	Inhibition of Caspases Protects Cerebellar Granule Cells of the Weaver Mouse from Apoptosis and Improves Behavioral Phenotype. Journal of Biological Chemistry, 2002, 277, 44285-44291.	1.6	28
89	Mutant αâ€synuclein and aging reduce neurogenesis in the acute 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydro model of Parkinson's disease. Aging Cell, 2011, 10, 255-262.	pyridine	28
90	Detrimental effects of oxidative losses in parkin activity in a model of sporadic Parkinson's disease are attenuated by restoration of PGC1alpha. Neurobiology of Disease, 2016, 93, 115-120.	2.1	28

#	Article	IF	CITATIONS
91	The highâ€affinity D2/D3 agonist D512 protects <scp>PC</scp> 12 cells from 6â€ <scp>OHDA</scp> â€induced apoptotic cell death and rescues dopaminergic neurons in the <scp>MPTP</scp> mouse model of Parkinson's disease. Journal of Neurochemistry, 2014, 131, 74-85.	2.1	26
92	Lithium prevents parkinsonian behavioral and striatal phenotypes in an aged parkin mutant transgenic mouse model. Brain Research, 2014, 1591, 111-117.	1.1	26
93	Endoplasmic Reticulum Stress–Induced Cell Death in Dopaminergic Cells: Effect of Resveratrol. Journal of Molecular Neuroscience, 2009, 39, 157-168.	1.1	24
94	Inducible dopaminergic glutathione depletion in an alpha-synuclein transgenic mouse model results in age-related olfactory dysfunction. Neuroscience, 2011, 172, 379-386.	1.1	23
95	An inducible MAO-B mouse model of Parkinson's disease: a tool towards better understanding basic disease mechanisms and developing novel therapeutics. Journal of Neural Transmission, 2018, 125, 1651-1658.	1.4	23
96	Increased expression of monoamine oxidase-B results in enhanced neurite degeneration in methamphetamine-treated PC12 cells. Journal of Neuroscience Research, 1997, 50, 618-626.	1.3	22
97	The Role of Iron in Parkinson Disease and 1â€Methylâ€4â€Phenylâ€1,2,3,6â€Tetrahydropyridine Toxicity. IUBMB I 1999, 48, 139-141.	_ife. 1.5	22
98	The combination of lithium and l-Dopa/Carbidopa reduces MPTP-induced abnormal involuntary movements (AIMs) via calpain-1 inhibition in a mouse model: Relevance for Parkinson׳s disease therapy. Brain Research, 2015, 1622, 127-136.	1.1	21
99	Cloning/brain localization of mouse glutamylcysteine synthetase heavy chain mRNA. NeuroReport, 1997, 8, 2053-2060.	0.6	20
100	The real Dorian Gray mouse. BioEssays, 2000, 22, 410-413.	1.2	20
101	Targeting kinases in Parkinson's disease: A mechanism shared by LRRK2, neurotrophins, exenatide, urate, nilotinib and lithium. Journal of the Neurological Sciences, 2019, 402, 121-130.	0.3	20
102	Insights into the effects of α-synuclein expression and proteasome inhibition on glutathione metabolism through a dynamic in silico model of Parkinson's disease: validation by cell culture data. Free Radical Biology and Medicine, 2008, 45, 1290-1301.	1.3	17
103	Antihelminthic Benzimidazoles Are Novel HIF Activators That Prevent Oxidative Neuronal Death via Binding to Tubulin. Antioxidants and Redox Signaling, 2015, 22, 121-134.	2.5	17
104	1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Resistant, Flat-Cell PC12 Variants Having a Partial Loss of Transformed Phenotype. Journal of Neurochemistry, 1990, 55, 559-567.	2.1	16
105	Ability to delay neuropathological events associated with astrocytic MAO-B increase in a Parkinsonian mouse model: Implications for early intervention on disease progression. Neurobiology of Disease, 2011, 43, 527-532.	2.1	16
106	Hsp90 Co-chaperone p23 contributes to dopaminergic mitochondrial stress via stabilization of PHD2: Implications for Parkinson's disease. NeuroToxicology, 2018, 65, 166-173.	1.4	16
107	Unknown fates of (brain) oxidation or UFO: Close encounters with neuronal senescence. Free Radical Biology and Medicine, 2019, 134, 695-701.	1.3	16
108	Microdose lithium reduces cellular senescence in human astrocytes - a potential pharmacotherapy for COVID-19?. Aging, 2020, 12, 10035-10040.	1.4	16

#	Article	IF	CITATIONS
109	A Possible Novel Anti-Inflammatory Mechanism for the Pharmacological Prolyl Hydroxylase Inhibitor 3,4-Dihydroxybenzoate: Implications for Use as a Therapeutic for Parkinson's Disease. Parkinson's Disease, 2012, 2012, 1-12.	0.6	14
110	A guide to senolytic intervention in neurodegenerative disease. Mechanisms of Ageing and Development, 2021, 200, 111585.	2.2	13
111	Do Alterations in Glutathione and Iron Levels Contribute to Pathology Associated with Parkinson's Disease?. Novartis Foundation Symposium, 2008, , 11-25.	1.2	11
112	Screening Method for Identifying Toxicants Capable of Inducing Astrocyte Senescence. Toxicological Sciences, 2018, 166, 16-24.	1.4	9
113	Acute and longâ€term response of dopamine nigrostriatal synapses to a single, lowâ€dose episode of 3â€nitropropionic acidâ€mediated chemical hypoxia. Synapse, 2011, 65, 339-350.	0.6	8
114	Longitudinal Functional Study of Murine Aging: A Resource for Future Study Designs. JBMR Plus, 2021, 5, e10466.	1.3	8
115	Reactive oxygen and nitrogen species in neurodegeneration. Free Radical Biology and Medicine, 2013, 62, 1-3.	1.3	7
116	Glutamyl cysteine synthetase catalytic and regulatory subunits localize to dopaminergic nigral neurons as well as to astrocytes. Journal of Neuroscience Research, 2001, 64, 203-206.	1.3	6
117	Genetically Engineered Mice and Their Use in Aging Research. Molecular Biotechnology, 2001, 19, 045-058.	1.3	6
118	Arvid Carlsson: An Early Pioneer in Translational Medicine. Science Translational Medicine, 2009, 1, 2ps3.	5.8	6
119	Pharmacological Prolyl Hydroxylase Domain Inhibition as a Therapeutic Target for Parkinson's Disease. CNS and Neurological Disorders - Drug Targets, 2014, 13, 120-125.	0.8	5
120	Mitochondrial Complex I Inhibition in Parkinson's Disease: How Can Curcumin Protect Mitochondria?. Antioxidants and Redox Signaling, 2006, .	2.5	5
121	Use of Genetically Engineered Mice As Models for Understanding Human Neurodegenerative Disease. Journal of the American Geriatrics Society, 1996, 44, 717-722.	1.3	4
122	Use of genetically engineered mice as models for exploring the role of oxidative stress in neurodegenerative diseases. Frontiers in Bioscience - Landmark, 1998, 3, c8-16.	3.0	4
123	Quantification of Insoluble Protein Aggregation in Caenorhabditis elegans during Aging with a Novel Data-Independent Acquisition Workflow. Journal of Visualized Experiments, 2020, , .	0.2	3
124	Brain γâ€glutamyl cysteine synthetase (GCS) mRNA expression patterns correlate with regionalâ€specific enzyme activities and glutathione levels. Journal of Neuroscience Research, 1999, 58, 436-441.	1.3	2
125	The Hunt for a Cure for Parkinson's Disease. Science of Aging Knowledge Environment: SAGE KE, 2001, 2001, 1re-1.	0.9	2
126	Defects in Dynein Linked to Motor Neuron Degeneration in Mice. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 10pe-10.	0.9	2

#	Article	IF	CITATIONS
127	Prospects and challenges for the use of stem cell technologies to develop novel therapies for Parkinson disease. Cell Cycle, 2011, 10, 4179-4180.	1.3	1
128	Parkinson's Disease and Aging. , 2016, , 229-255.		1
129	Swimming exercise reduces native âº-synuclein protein species in a transgenic model of Parkinson's disease. MicroPublication Biology, 2021, 2021, .	0.1	0