Bodo Bookhagen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7814564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Late Pleistocene climate variability on paleo-erosion rates in the western Himalaya. Earth and Planetary Science Letters, 2022, 578, 117326.	4.4	5
2	Geomorphic expression of a tectonically active rift-transfer zone in southern Ethiopia. Geomorphology, 2022, 403, 108162.	2.6	3
3	Role of Poroelasticity During the Early Postseismic Deformation of the 2010 Maule Megathrust Earthquake. Geophysical Research Letters, 2022, 49, .	4.0	4
4	Measuring Vegetation Heights and Their Seasonal Changes in the Western Namibian Savanna Using Spaceborne Lidars. Remote Sensing, 2022, 14, 2928.	4.0	1
5	The spatial pattern of extreme precipitation from 40 years of gauge data in the central Himalaya. Weather and Climate Extremes, 2022, 37, 100470.	4.1	1
6	Climatic and Biotic Controls on Topographic Asymmetry at the Global Scale. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005692.	2.8	8
7	Unravelling the Pleistocene glacial history of the Pamir mountains, Central Asia. Quaternary Science Reviews, 2021, 257, 106857.	3.0	6
8	Tracking Downstream Variability in Large Grainâ€Size Distributions in the South entral Andes. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006260.	2.8	9
9	A Model for the Relationship between Rainfall, GNSS-Derived Integrated Water Vapour, and CAPE in the Eastern Central Andes. Remote Sensing, 2021, 13, 3788.	4.0	5
10	Topography and climate in the upper Indus Basin: Mapping elevation-snow cover relationships. Science of the Total Environment, 2021, 786, 147363.	8.0	2
11	Beyond Vertical Point Accuracy: Assessing Inter-pixel Consistency in 30Âm Global DEMs for the Arid Central Andes. Frontiers in Earth Science, 2021, 9, .	1.8	18
12	Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia. Science, 2021, 374, 599-603.	12.6	121
13	The role of cyclonic activity in tropical temperature-rainfall scaling. Nature Communications, 2021, 12, 6732.	12.8	9
14	Identification of Debrisâ€Flow Channels Using Highâ€Resolution Topographic Data: A Case Study in the Quebrada del Toro, NW Argentina. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006330.	2.8	4
15	Validation and calibration of soil δ2H and brGDGTs along (E-W) and strike (N-S) of the Himalayan climatic gradient. Geochimica Et Cosmochimica Acta, 2020, 290, 408-423.	3.9	6
16	Corrigendum to "Role of climate and vegetation density in modulating denudation rates in the Himalaya―[Earth Planet. Sci. Lett. 445 (2016) 57–67]. Earth and Planetary Science Letters, 2020, 540, 116252.	4.4	1
17	Atmospheric dynamics of extreme discharge events from 1979 to 2016 in the southern Central Andes. Climate Dynamics, 2020, 55, 3485-3505.	3.8	6
18	Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data. Frontiers in Earth Science, 2020, 8, .	1.8	10

#	Article	IF	CITATIONS
19	Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal. Journal of Hydrology, 2020, 586, 124802.	5.4	4
20	Multiband (X, C, L) radar amplitude analysis for a mixed sand- and gravel-bed river in the eastern Central Andes. Remote Sensing of Environment, 2020, 246, 111799.	11.0	9
21	Analyses of Namibian Seasonal Salt Pan Crust Dynamics and Climatic Drivers Using Landsat 8 Time-Series and Ground Data. Remote Sensing, 2020, 12, 474.	4.0	10
22	Applications of SAR Interferometric Coherence Time Series: Spatiotemporal Dynamics of Geomorphic Transitions in the South entral Andes. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005141.	2.8	10
23	Remotely Sensed Rain and Snowfall in the Himalaya. , 2020, , 119-139.		0
24	Using Convective Available Potential Energy (CAPE) and Dew-Point Temperature to Characterize Rainfall-Extreme Events in the South-Central Andes. Atmosphere, 2019, 10, 379.	2.3	12
25	A Networkâ€Based Flow Accumulation Algorithm for Point Clouds: Facetâ€Flow Networks (FFNs). Journal of Geophysical Research F: Earth Surface, 2019, 124, 2013-2033.	2.8	7
26	Advances in the Derivation of Northeast Siberian Forest Metrics Using High-Resolution UAV-Based Photogrammetric Point Clouds. Remote Sensing, 2019, 11, 1447.	4.0	19
27	OSARIS, the "Open Source SAR Investigation System―for Automatized Parallel InSAR Processing of Sentinel-1 Time Series Data With Special Emphasis on Cryosphere Applications. Frontiers in Earth Science, 2019, 7, .	1.8	11
28	Introducing <i>PebbleCounts</i> : a grain-sizing tool for photo surveys of dynamic gravel-bed rivers. Earth Surface Dynamics, 2019, 7, 859-877.	2.4	33
29	Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature, 2019, 566, 373-377.	27.8	241
30	Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset. Earth Surface Dynamics, 2019, 7, 475-489.	2.4	12
31	Enhanced Himalayan Glacial Melting During YD and H1 Recorded in the Northern Bay of Bengal. Geochemistry, Geophysics, Geosystems, 2019, 20, 2449-2461.	2.5	11
32	Clustering River Profiles to Classify Geomorphic Domains. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1417-1439.	2.8	22
33	3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149, 200-214.	11.1	23
34	Coarse- versus fine-grain quartz OSL and cosmogenic 10 Be dating of deformed fluvial terraces on the northeast Pamir margin, northwest China. Quaternary Geochronology, 2018, 46, 1-15.	1.4	31
35	Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009). Science Advances, 2018, 4, e1701550.	10.3	141
36	Locality-Based Graph Clustering of Spatially Embedded Time Series. Studies in Computational Intelligence, 2018, , 719-730.	0.9	1

3

#	Article	IF	CITATIONS
37	Impact of the Atatürk Dam Lake on Agro-Meteorological Aspects of the Southeastern Anatolia Region, Turkey. Journal of the Indian Society of Remote Sensing, 2018, 46, 471-481.	2.4	4
38	Fault activity, tectonic segmentation, and deformation pattern of the western Himalaya on Ma timescales inferred from landscape morphology. Lithosphere, 2018, 10, 632-640.	1.4	21
39	Dating growth strata and basin fill by combining 26Al/10Be burial dating and magnetostratigraphy: Constraining active deformation in the Pamir–Tian Shan convergence zone, NW China. Lithosphere, 2018, 10, 806-828.	1.4	22
40	Measuring decadal vertical land-level changes from SRTM-CÂ(2000) and TanDEM-X ( â^¼â€‰2015) in the south-central Andes. Earth Surface Dynamics, 2018, 6, 971-987.	2.4	12
41	The effect of Indian Summer Monsoon rainfall on surface water ÎƊ values in the central Himalaya. Hydrological Processes, 2018, 32, 3662-3674.	2.6	9
42	Mapping Damage-Affected Areas after Natural Hazard Events Using Sentinel-1 Coherence Time Series. Remote Sensing, 2018, 10, 1272.	4.0	43
43	Glacial chronology and production rate cross-calibration of five cosmogenic nuclide and mineral systems from the southern Central Andean Plateau. Earth and Planetary Science Letters, 2018, 500, 242-253.	4.4	14
44	Formation of a Rain Shadow: O and H Stable Isotope Records in Authigenic Clays From the Siwalik Group in Eastern Bhutan. Geochemistry, Geophysics, Geosystems, 2018, 19, 3430-3447.	2.5	11
45	Using passive microwave data to understand spatio-temporal trends and dynamics in snow-water storage in High Mountain Asia. , 2018, , .		0
46	Network-based flow accumulation for point clouds: Facet-Flow Networks (FFN). , 2018, , .		0
47	Forschung im Fluge. TATuP - Zeitschrift Für TechnikfolgenabschÃæzung in Theorie Und Praxis, 2018, 27, 45-50.	0.4	0
48	Rainfall variability and trends of the past six decades (1950–2014) in the subtropical NW Argentine Andes. Climate Dynamics, 2017, 48, 1049-1067.	3.8	33
49	Effects of topographic smoothing on the simulation of winter precipitation in High Mountain Asia. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1456-1474.	3.3	32
50	Hyperspectral and Lidar Intensity Data Fusion: A Framework for the Rigorous Correction of Illumination, Anisotropic Effects, and Cross Calibration. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 2799-2810.	6.3	40
51	The Influence of Hydrology and Glaciology on Wetlands in the Himalayas. , 2017, , 175-188.		4
52	Toward mountains without permanent snow and ice. Earth's Future, 2017, 5, 418-435.	6.3	324
53	An automated knickzone selection algorithm (KZâ€Picker) to analyze transient landscapes: Calibration and validation. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1236-1261.	2.8	60
54	100 kyr fluvial cut-and-fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina. Earth and Planetary Science Letters, 2017, 473, 141-153.	4.4	59

4

#	Article	IF	CITATIONS
55	High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130, 108-121.	11.1	32
56	Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data. Geophysical Research Letters, 2017, 44, 10,977.	4.0	25
57	Oscillations and trends of river discharge in the southern Central Andes and linkages with climate variability. Journal of Hydrology, 2017, 555, 108-124.	5.4	18
58	Variations of Lateral Bedrock Erosion Rates Control Planation of Uplifting Folds in the Foreland of the Tian Shan, NW China. Journal of Geophysical Research F: Earth Surface, 2017, 122, 2431-2467.	2.8	22
59	The spatiotemporal variability of precipitation over the Himalaya: evaluation of one-year WRF model simulation. Climate Dynamics, 2017, 49, 2179-2204.	3.8	62
60	Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated snowmelt detection algorithm, 1987–2016. Cryosphere, 2017, 11, 2329-2343.	3.9	36
61	Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau. Earth Surface Dynamics, 2017, 5, 211-237.	2.4	96
62	Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India. Earth and Planetary Science Letters, 2016, 449, 321-331.	4.4	50
63	Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes. Geophysical Research Letters, 2016, 43, 1710-1717.	4.0	71
64	Role of climate and vegetation density in modulating denudation rates in the Himalaya. Earth and Planetary Science Letters, 2016, 445, 57-67.	4.4	51
65	Climatic and geomorphic drivers of plant organic matter transport in the Arun River, E Nepal. Earth and Planetary Science Letters, 2016, 452, 104-114.	4.4	18
66	Riverâ€discharge dynamics in the Southern Central Andes and the 1976–77 global climate shift. Geophysical Research Letters, 2016, 43, 11,679.	4.0	18
67	The effects of check dams and other erosion control structures on the restoration of Andean bofedal ecosystems. Restoration Ecology, 2016, 24, 761-772.	2.9	22
68	Holocene internal shortening within the northwest Subâ€Himalaya: Outâ€ofâ€sequence faulting of the Jwalamukhi Thrust, India. Tectonics, 2016, 35, 2677-2697.	2.8	36
69	Tipping elements of the Indian monsoon: Prediction of onset and withdrawal. Geophysical Research Letters, 2016, 43, 3982-3990.	4.0	81
70	Decoupling of modern shortening rates, climate, and topography in the Caucasus. Earth and Planetary Science Letters, 2016, 449, 282-294.	4.4	37
71	Assessing uncertainty and sensor biases in passive microwave data across High Mountain Asia. Remote Sensing of Environment, 2016, 181, 174-185.	11.0	34
72	Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity. Journal of Geophysical Research F: Earth Surface, 2016, 121, 392-414.	2.8	42

#	Article	IF	CITATIONS
73	Improving Sensor Fusion: A Parametric Method for the Geometric Coalignment of Airborne Hyperspectral and Lidar Data. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 3460-3474.	6.3	29
74	Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling. Advances in Water Resources, 2016, 88, 152-169.	3.8	70
75	Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range. Climate Dynamics, 2016, 46, 601-617.	3.8	58
76	Glaciers and Monsoon Systems. Springer Climate, 2016, , 225-249.	0.6	2
77	Understanding erosion rates in the Himalayan orogen: A case study from the Arun Valley. Journal of Geophysical Research F: Earth Surface, 2015, 120, 2080-2102.	2.8	39
78	Late Miocene northward propagation of the northeast Pamir thrust system, northwest China. Tectonics, 2015, 34, 510-534.	2.8	77
79	Improving semi-automated glacier mapping with a multi-method approach: applications in central Asia. Cryosphere, 2015, 9, 1747-1759.	3.9	31
80	Extreme Rainfall of the South American Monsoon System: A Dataset Comparison Using Complex Networks. Journal of Climate, 2015, 28, 1031-1056.	3.2	45
81	Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Climate Dynamics, 2015, 44, 441-455.	3.8	156
82	Along-strike changes in Himalayan thrust geometry: Topographic and tectonic discontinuities in western Nepal. Lithosphere, 2015, 7, 511-518.	1.4	61
83	Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry. Remote Sensing of Environment, 2015, 162, 141-153.	11.0	98
84	Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India. Earth and Planetary Science Letters, 2015, 428, 255-266.	4.4	67
85	Effect of vegetation cover on millennial-scale landscape denudation rates in East Africa. Lithosphere, 2015, 7, 408-420.	1.4	58
86	Propagation of Strong Rainfall Events from Southeastern South America to the Central Andes. Journal of Climate, 2015, 28, 7641-7658.	3.2	20
87	Complex network analysis helps to identify impacts of the El Niño Southern Oscillation on moisture divergence in South America. Climate Dynamics, 2015, 45, 619-632.	3.8	48
88	Regional climate model sensitivities to parametrizations of convection and non-precipitating subgrid-scale clouds over South America. Climate Dynamics, 2015, 44, 2839-2857.	3.8	17
89	Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka. Nonlinear Processes in Geophysics, 2014, 21, 901-917.	1.3	81
90	Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. Cryosphere, 2014, 8, 359-376.	3.9	100

#	Article	IF	CITATIONS
91	Geometry and kinematics of the Main Himalayan Thrust and Neogene crustal exhumation in the Bhutanese Himalaya derived from inversion of multithermochronologic data. Journal of Geophysical Research: Solid Earth, 2014, 119, 1446-1481.	3.4	99
92	Relationship of channel steepness to channel incision rate from a tilted and progressively exposed unconformity surface. Journal of Geophysical Research F: Earth Surface, 2014, 119, 366-384.	2.8	7
93	Tectonic control on ¹⁰ Beâ€derived erosion rates in the Garhwal Himalaya, India. Journal of Geophysical Research F: Earth Surface, 2014, 119, 83-105.	2.8	141
94	Formation of passive-roof duplexes in the Colombian Subandes and Perú. Lithosphere, 2014, 6, 456-472.	1.4	31
95	Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes. Earth and Planetary Science Letters, 2014, 407, 187-195.	4.4	72
96	What controls the growth of the Himalayan foreland fold-and-thrust belt?. Geology, 2014, 42, 247-250.	4.4	63
97	Evaluating spatial patterns of drought-induced tree mortality in a coastal California pine forest. Forest Ecology and Management, 2014, 315, 43-53.	3.2	54
98	Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sensing of Environment, 2014, 148, 70-83.	11.0	380
99	Local high relief at the southern margin of the Andean plateau by 9ÂMa: evidence from ignimbritic valley fills and river incision. Terra Nova, 2014, 26, 454-460.	2.1	18
100	Dominance of tectonics over climate in Himalayan denudation. Geology, 2014, 42, 243-246.	4.4	161
101	Prediction of extreme floods in the eastern Central Andes based on a complex networks approach. Nature Communications, 2014, 5, 5199.	12.8	197
102	The South American rainfall dipole: A complex network analysis of extreme events. Geophysical Research Letters, 2014, 41, 7397-7405.	4.0	94
103	Holocene versus modern catchment erosion rates at 300MW Baspa II hydroelectric power plant (India,) Tj ETQq1	1.0.7843 2.3	14 rgBT /O
104	Controls on erosion intensity in the Yangtze River basin tracked by U–Pb detrital zircon dating. Earth-Science Reviews, 2014, 136, 121-140.	9.1	69
105	Complex networks identify spatial patterns of extreme rainfall events of the South American Monsoon System. Geophysical Research Letters, 2013, 40, 4386-4392.	4.0	171
106	Channel planform geometry and slopes from freely available high-spatial resolution imagery and DEM fusion: Implications for channel width scalings, erosion proxies, and fluvial signatures in tectonically active landscapes. Geomorphology, 2013, 194, 46-56.	2.6	103
107	Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides. Tectonics, 2013, 32, 1107-1120.	2.8	30
108	Late Pleistocene glacial advances in the western Tibet interior. Earth and Planetary Science Letters, 2013. 381. 210-221.	4.4	32

#	Article	IF	CITATIONS
109	Frequencyâ€dependent landscape response to climatic forcing. Geophysical Research Letters, 2013, 40, 859-863.	4.0	61
110	Himalayan groundwater. Nature Geoscience, 2012, 5, 97-98.	12.9	38
111	Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Climate Dynamics, 2012, 39, 971-987.	3.8	220
112	Holocene and Anthropocene Landscape Change: Arroyo Formation on Santa Cruz Island, California. Annals of the American Association of Geographers, 2012, 102, 1229-1250.	3.0	25
113	Multi-phased uplift of the southern margin of the Central Anatolian plateau, Turkey: A record of tectonic and upper mantle processes. Earth and Planetary Science Letters, 2012, 317-318, 85-95.	4.4	175
114	Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes. Earth and Planetary Science Letters, 2012, 327-328, 97-110.	4.4	183
115	Impact of glacial erosion on ¹⁰ Be concentrations in fluvial sediments of the Marsyandi catchment, central Nepal. Journal of Geophysical Research, 2012, 117, .	3.3	51
116	Modern climate and erosion in the Himalaya. Comptes Rendus - Geoscience, 2012, 344, 610-626.	1.2	64
117	Precipitation Characteristics of the South American Monsoon System Derived from Multiple Datasets. Journal of Climate, 2012, 25, 4600-4620.	3.2	46
118	Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya. Hydrology and Earth System Sciences, 2012, 16, 2193-2217.	4.9	72
119	Hillslopeâ€glacier coupling: The interplay of topography and glacial dynamics in High Asia. Journal of Geophysical Research, 2011, 116, .	3.3	117
120	Neogene to Quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25°S). Tectonics, 2011, 30, .	2.8	86
121	Basin width control of faulting in the Naryn Basin, southâ€central Kyrgyzstan. Tectonics, 2011, 30, .	2.8	23
122	Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 2011, 4, 156-159.	12.9	812
123	The topographic imprint of a transient climate episode: the western Andean flank between 15·5° and 41·5°S. Earth Surface Processes and Landforms, 2010, 35, 1516-1534.	2.5	23
124	Appearance of extreme monsoonal rainfall events and their impact on erosion in the Himalaya. Geomatics, Natural Hazards and Risk, 2010, 1, 37-50.	4.3	96
125	Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research, 2010, 115, .	3.3	875
126	Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology, 2010, 118, 13-21.	2.6	140

#	Article	IF	CITATIONS
127	Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. Geomorphology, 2010, 118, 288-300.	2.6	195
128	Timing and extent of late Quaternary glaciation in the western Himalaya constrained by 10Be moraine dating in Garhwal, India. Quaternary Science Reviews, 2010, 29, 815-831.	3.0	82
129	Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes?. Geology, 2009, 37, 643-646.	4.4	85
130	Î180 and ÎƊ of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth and Planetary Science Letters, 2009, 288, 20-32.	4.4	206
131	Erosional variability along the northwest Himalaya. Journal of Geophysical Research, 2009, 114, .	3.3	94
132	Segmentation of megathrust rupture zones from foreâ€arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile. Journal of Geophysical Research, 2009, 114, .	3.3	167
133	Orographic barriers, highâ€resolution TRMM rainfall, and relief variations along the eastern Andes. Geophysical Research Letters, 2008, 35, .	4.0	275
134	Modern erosion rates in the High Himalayas of Nepal. Earth and Planetary Science Letters, 2008, 267, 482-494.	4.4	159
135	Major ion chemistry of the Yarlung Tsangpo–Brahmaputra river: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya. Geochimica Et Cosmochimica Acta, 2007, 71, 2907-2935.	3.9	161
136	Tectonics and Climate of the Southern Central Andes. Annual Review of Earth and Planetary Sciences, 2007, 35, 747-787.	11.0	344
137	Bedrock channel geometry along an orographic rainfall gradient in the upper Marsyandi River valley in central Nepal. Journal of Geophysical Research, 2007, 112, .	3.3	57
138	Coastal deformation and great subduction earthquakes, Isla Santa Maria, Chile (37ÂS). Bulletin of the Geological Society of America, 2006, 118, 1463-1480.	3.3	109
139	Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters, 2006, 33, .	4.0	422
140	Using uplifted Holocene beach berms for paleoseismic analysis on the Santa MarÃa Island, south-central Chile. Geophysical Research Letters, 2006, 33, .	4.0	63
141	Correction to "Topography, relief, and TRMM-derived rainfall variations along the Himalaya― Geophysical Research Letters, 2006, 33, .	4.0	19
142	Tectonics, Climate, and Landscape Evolution of the Southern Central Andes: the Argentine Puna Plateau and Adjacent Regions between 22 and 30°S. , 2006, , 265-283.		26
143	Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas. Geology, 2006, 34, 801.	4.4	172
144	Holocene monsoonal dynamics and fluvial terrace formation in the northwest Himalaya, India. Geology, 2006, 34, 601.	4.4	113

#	Article	IF	CITATIONS
145	Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India. Bulletin of the Geological Society of America, 2006, 118, 635-650.	3.3	117
146	From tectonically to erosionally controlled development of the Himalayan orogen. Geology, 2005, 33, 689.	4.4	77
147	From tectonically to erosionally controlled development of the Himalayan orogen. Geology, 2005, 33, 689-692.	4.4	104
148	Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology, 2005, 33, 149.	4.4	319
149	Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwest Himalaya. Earth and Planetary Science Letters, 2005, 231, 131-146.	4.4	219
150	Climatic control on rapid exhumation along the Southern Himalayan Front. Earth and Planetary Science Letters, 2004, 222, 791-806.	4.4	263
151	Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 194, 109-121.	2.3	128
152	Paleoprecipitation estimates for the Lake Naivasha basin (Kenya) during the last 175 k.y. using a lake-balance model. Global and Planetary Change, 2003, 36, 117-136.	3.5	56
153	Late Pleistocene Climate Change and Erosion in the Santa Maria Basin, NW Argentina. Journal of Sedimentary Research, 2003, 73, 82-90.	1.6	19
154	Hydrological modelling of a Pleistocene landslide-dammed lake in the Santa Maria Basin, NW Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169, 113-127.	2.3	46