
## Ingo Lieberwirth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7814510/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nanocarriers Made of Proteins: Intracellular Visualization of a Smart Biodegradable Drug Delivery<br>System. Small, 2022, 18, e2106094.                                                  | 10.0 | 4         |
| 2  | Aerobic Photobiocatalysis Enabled by Combining Core–Shell Nanophotoreactors and Native Enzymes.<br>Journal of the American Chemical Society, 2022, 144, 7320-7326.                       | 13.7 | 26        |
| 3  | The Diatom Peptide R5 Fabricates Two-Dimensional Titanium Dioxide Nanosheets. Journal of Physical<br>Chemistry Letters, 2022, 13, 5025-5029.                                             | 4.6  | 2         |
| 4  | In Situ Assembly of Platinum(II)-Metallopeptide Nanostructures Disrupts Energy Homeostasis and<br>Cellular Metabolism. Journal of the American Chemical Society, 2022, 144, 12219-12228. | 13.7 | 20        |
| 5  | Self-sustaining enzyme nanocapsules perform on-site chemical reactions. Nanoscale, 2021, 13, 4051-4059.                                                                                  | 5.6  | 11        |
| 6  | Biodegradable Harmonophores for Targeted High-Resolution <i>In Vivo</i> Tumor Imaging. ACS Nano, 2021, 15, 4144-4154.                                                                    | 14.6 | 11        |
| 7  | Intrinsisch ungeordnete Osteopontinâ€Fragmente ordnen sich wĤrend der interfazialen<br>Calciumoxalatâ€Mineralisierung. Angewandte Chemie, 2021, 133, 18725-18729.                        | 2.0  | 0         |
| 8  | Intrinsically Disordered Osteopontin Fragment Orders During Interfacial Calcium Oxalate<br>Mineralization. Angewandte Chemie - International Edition, 2021, 60, 18577-18581.             | 13.8 | 6         |
| 9  | Terpyridine-Induced Folding of Anisotropic Polyphosphoester Platelets. ACS Polymers Au, 2021, 1, 123-130.                                                                                | 4.1  | 1         |
| 10 | Polymer defect engineering – conductive 2D organic platelets from precise thiophene-doped polyethylene. Polymer Chemistry, 2021, 12, 2045-2053.                                          | 3.9  | 1         |
| 11 | Thermoresponsive polymers as macromolecular coordination ligands: complexation-dependence of thermally induced aggregation in aqueous solution. Polymer Chemistry, 2021, 12, 5598-5612.  | 3.9  | 1         |
| 12 | Triple-target stimuli-responsive anti-COVID-19 face mask with physiological virus-inactivating agents.<br>Biomaterials Science, 2021, 9, 6052-6063.                                      | 5.4  | 10        |
| 13 | RNA-inspired intramolecular transesterification accelerates the hydrolysis of polyethylene-like polyphosphoesters. Chemical Science, 2021, 12, 16054-16064.                              | 7.4  | 12        |
| 14 | A bio-orthogonal functionalization strategy for site-specific coupling of antibodies on vesicle surfaces after self-assembly. Polymer Chemistry, 2020, 11, 527-540.                      | 3.9  | 31        |
| 15 | Water-dispersed semiconductor nanoplatelets with high fluorescence brightness, chemical and colloidal stability. Journal of Materials Chemistry B, 2020, 8, 146-154.                     | 5.8  | 17        |
| 16 | Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules. Nanoscale, 2020, 12, 2626-2637.                                          | 5.6  | 26        |
| 17 | Continuous-Flow Production of Perfluorocarbon-Loaded Polymeric Nanoparticles: From the Bench to Clinic. ACS Applied Materials & amp; Interfaces, 2020, 12, 49335-49345.                  | 8.0  | 20        |
| 18 | The inorganic polymer, polyphosphate, blocks binding of SARS-CoV-2 spike protein to ACE2 receptor at physiological concentrations. Biochemical Pharmacology, 2020, 182, 114215.          | 4.4  | 51        |

INGO LIEBERWIRTH

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Variation in intraocular lens calcification under different environmental conditions in eyes with<br>supplementary sulcus-supported lenses. American Journal of Ophthalmology Case Reports, 2020, 19,<br>100797. | 0.7  | 11        |
| 20 | Nanoparticle-directed and ionically forced polyphosphate coacervation: a versatile and reversible core–shell system for drug delivery. Scientific Reports, 2020, 10, 17147.                                      | 3.3  | 18        |
| 21 | Controlled Supramolecular Assembly Inside Living Cells by Sequential Multistaged Chemical<br>Reactions. Journal of the American Chemical Society, 2020, 142, 15780-15789.                                        | 13.7 | 59        |
| 22 | Tuning the size and morphology of P3HT/PCBM composite nanoparticles: towards optimized water-processable organic solar cells. Nanoscale, 2020, 12, 22798-22807.                                                  | 5.6  | 10        |
| 23 | Defect engineering of polyethylene-like polyphosphoesters: solid-state NMR characterization and surface chemistry of anisotropic polymer nanoplatelets. Polymer Chemistry, 2020, 11, 7235-7243.                  | 3.9  | 5         |
| 24 | Controlling the crystal structure of precisely spaced polyethylene-like polyphosphoesters. Polymer Chemistry, 2020, 11, 3404-3415.                                                                               | 3.9  | 13        |
| 25 | Facile Solutions to the Problems Associated with Chemical Information and Mathematical Symbolism<br>While Using Machine Translation Tools. Journal of Chemical Information and Modeling, 2020, 60,<br>3423-3430. | 5.4  | 0         |
| 26 | Vitamin C Loaded Polyethylene: Synthesis and Properties of Precise Polyethylene with Vitamin C<br>Defects via Acyclic Diene Metathesis Polycondensation. Macromolecules, 2020, 53, 2932-2941.                    | 4.8  | 5         |
| 27 | Aliphatic Long-Chain Polypyrophosphates as Biodegradable Polyethylene Mimics. Macromolecules, 2019, 52, 1166-1172.                                                                                               | 4.8  | 15        |
| 28 | Peptide-Controlled Assembly of Macroscopic Calcium Oxalate Nanosheets. Journal of Physical Chemistry Letters, 2019, 10, 2170-2174.                                                                               | 4.6  | 18        |
| 29 | Long-Chain Polyorthoesters as Degradable Polyethylene Mimics. Macromolecules, 2019, 52, 2411-2420.                                                                                                               | 4.8  | 45        |
| 30 | High-Contrast Imaging of Nanodiamonds in Cells by Energy Filtered and Correlative Light-Electron<br>Microscopy: Toward a Quantitative Nanoparticle-Cell Analysis. Nano Letters, 2019, 19, 2178-2185.             | 9.1  | 40        |
| 31 | Highly Loaded Semipermeable Nanocapsules for Magnetic Resonance Imaging. Macromolecular<br>Bioscience, 2018, 18, e1700387.                                                                                       | 4.1  | 13        |
| 32 | Is Machine Translation a Reliable Tool for Reading German Scientific Databases and Research Articles?.<br>Journal of Chemical Information and Modeling, 2018, 58, 2214-2223.                                     | 5.4  | 14        |
| 33 | Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions. Nanoscale, 2018, 10, 10731-10739.                                                                     | 5.6  | 101       |
| 34 | Transformation of Amorphous Polyphosphate Nanoparticles into Coacervate Complexes: An Approach for the Encapsulation of Mesenchymal Stem Cells. Small, 2018, 14, e1801170.                                       | 10.0 | 47        |
| 35 | CeO <sub>2â^'x</sub> nanorods with intrinsic urease-like activity. Nanoscale, 2018, 10, 13074-13082.                                                                                                             | 5.6  | 59        |
| 36 | Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nature<br>Nanotechnology, 2018, 13, 862-869.                                                                       | 31.5 | 210       |

INGO LIEBERWIRTH

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Visualization of the protein corona: towards a biomolecular understanding of nanoparticle-cell-interactions. Nanoscale, 2017, 9, 8858-8870.                                      | 5.6  | 203       |
| 38 | STED Analysis of Droplet Deformation during Emulsion Electrospinning. Macromolecular Chemistry and Physics, 2017, 218, 1600547.                                                  | 2.2  | 11        |
| 39 | A Nanocapsuleâ€Based Approach Toward Physical Thermolatent Catalysis. Advanced Materials, 2016, 28,<br>6372-6377.                                                                | 21.0 | 5         |
| 40 | In-Chain Poly(phosphonate)s via Acyclic Diene Metathesis Polycondensation. Macromolecules, 2016, 49,<br>3761-3768.                                                               | 4.8  | 29        |
| 41 | Imaging of Polymeric Nanoparticles: Hard Challenge for Soft Objects. Macromolecular Chemistry and Physics, 2016, 217, 1879-1885.                                                 | 2.2  | 33        |
| 42 | Side-chain poly(phosphoramidate)s via acyclic diene metathesis polycondensation. Polymer Chemistry,<br>2016, 7, 5004-5010.                                                       | 3.9  | 19        |
| 43 | Morphology and Thermal Properties of Precision Polymers: The Crystallization of Butyl Branched Polyethylene and Polyphosphoesters. Macromolecules, 2016, 49, 1321-1330.          | 4.8  | 38        |
| 44 | Non-aqueous synthesis of blue light emitting <sup>ĵ</sup> 3-Ga2O3 and c-In2O3 nanostructures from their ethylene<br>glycolate precursors. Materials Letters, 2015, 161, 112-116. | 2.6  | 8         |
| 45 | Macromol. Rapid Commun. 23/2014. Macromolecular Rapid Communications, 2014, 35, 2044-2044.                                                                                       | 3.9  | 0         |
| 46 | Decreasing the Alkyl Branch Frequency in Precision Polyethylene: Effect of Alkyl Branch Size on<br>Nanoscale Morphology. Macromolecules, 2012, 45, 3367-3376.                    | 4.8  | 66        |
| 47 | Improvement of cyclability of Si as anode for Li-ion batteries. Journal of Power Sources, 2009, 192, 644-651.                                                                    | 7.8  | 159       |
| 48 | Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI).<br>Desalination, 2009, 249, 1048-1054.                                          | 8.2  | 81        |
| 49 | Assemblies of Double Hydrophilic Block Copolymers and Oppositely Charged Dendrimers. Langmuir, 2009, 25, 1345-1351.                                                              | 3.5  | 31        |
| 50 | Morphology, mechanical, and thermal properties of aramid/layered silicate nanocomposite materials.<br>Journal of Materials Research, 2008, 23, 2296-2304.                        | 2.6  | 8         |
| 51 | An electron microscopic investigation of structural variation of V2O5 fibers after working as ethanol sensors. Applied Physics Letters, 2008, 93, 173510.                        | 3.3  | 3         |
| 52 | Optical Properties of Composites of PMMA and Surface-Modified Zincite Nanoparticles.<br>Macromolecules, 2007, 40, 1089-1100.                                                     | 4.8  | 184       |
| 53 | α and β Interfacial Structures of the iPP/PET Matrix/Fiber Systems. Macromolecules, 2007, 40, 8244-8249.                                                                         | 4.8  | 41        |
| 54 | Equilibrium Length and Shape of Rodlike Polyelectrolyte Micelles in Dilute Aqueous Solutions.<br>Macromolecules, 2007, 40, 105-115.                                              | 4.8  | 47        |

4

INGO LIEBERWIRTH

| #  | Article                                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | One-Dimensional Porous Carbon/Platinum Composites for Nanoscale Electrodes. Angewandte Chemie -<br>International Edition, 2007, 46, 3464-3467.                                                                                                                                                             | 13.8 | 58        |
| 56 | Melt-Processed Polyfluorene Nanowires as Active Waveguides. Small, 2007, 3, 1178-1183.                                                                                                                                                                                                                     | 10.0 | 133       |
| 57 | Nonhydrolytic Alcoholysis Route to Morphology-Controlled ZnO Nanocrystals. Small, 2007, 3,<br>1194-1199.                                                                                                                                                                                                   | 10.0 | 51        |
| 58 | Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nature<br>Nanotechnology, 2007, 2, 180-184.                                                                                                                                                                        | 31.5 | 379       |
| 59 | Synthesis of Dumbbell-Shaped Manganese Oxide Nanocrystals. Journal of Physical Chemistry B, 2006, 110, 2-4.                                                                                                                                                                                                | 2.6  | 68        |
| 60 | Simple, One-Step Synthesis of Gold Nanowires in Aqueous Solution. Langmuir, 2005, 21, 12399-12403.                                                                                                                                                                                                         | 3.5  | 53        |
| 61 | Microstructured Ultrathin HDPE Films Prepared by Selective Oriented Recrystallization. Journal of<br>Macromolecular Science - Physics, 2003, 42, 641-652.                                                                                                                                                  | 1.0  | 13        |
| 62 | Morphology and Melting Behavior of Lamellar Overgrowths after Heat Treatments of Isotactic Polystyrene. Macromolecular Chemistry and Physics, 2001, 202, 2921-2925.                                                                                                                                        | 2.2  | 8         |
| 63 | Nanostructured Polymer Films by Electron-Beam Irradiation and Selective Metallization. Advanced Materials, 1998, 10, 997-1001.                                                                                                                                                                             | 21.0 | 3         |
| 64 | Poly(3â€hexylthiophene) stabilized ultrafine nickel oxide nanoparticles as superior electrocatalyst for<br>oxygen evolution reaction: Catalyst design through synergistic combination of <scp>ï€</scp><br>â€conjugated polymers and metalâ€based nanoparticles. Journal of Applied Polymer Science, 0, , . | 2.6  | 0         |