Iurii Bogomol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/781439/publications.pdf

Version: 2024-02-01

687363 642732 34 586 13 23 citations h-index g-index papers 34 34 34 336 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural and Tribological Studies of "(TiC + WC)/Hardened Steel―PMMC Coating Deposited by Air Pulsed Plasma. Metals, 2022, 12, 218.	2.3	13
2	Microstructure Formation of Cast and Directionally Solidified Mo-Ti-B Alloys. Metals, 2022, 12, 916.	2.3	O
3	Phase compatibility in (WC-W2C)/AlFeCoNiCrTi composite produced by spark plasma sintering. Journal of Alloys and Compounds, 2022, 921, 166042.	5.5	5
4	Microstructure and mechanical properties of B4C-NbB2-SiC ternary eutectic composites by a crucible-free zone melting method. Journal of the European Ceramic Society, 2021, 41, 1189-1196.	5.7	10
5	Temperature Resistance of Mo3Si: Phase Stability, Microhardness, and Creep Properties. Metals, 2021, 11, 564.	2.3	8
6	EFFECTIVE THERMOPHYSICAL PROPERTIES OF POWDER MATERIALS DURING SINTERING UNDER ELECTRONBEAM HEATING. KPI Science News, 2021, , .	0.1	0
7	Structural and Tribological Assessment of Biomedical 316 Stainless Steel Subjected to Pulsed-Plasma Surface Modification: Comparison of LPBF 3D Printing and Conventional Fabrication. Materials, 2021, 14, 7671.	2.9	9
8	Hierarchical composites of B4C–TiB2 eutectic particles reinforced with Ti. Ceramics International, 2020, 46, 28132-28144.	4.8	11
9	Structure and Properties of the Directionally Crystallized B4C–NbB2–SiC Alloy. Journal of Superhard Materials, 2020, 42, 18-24.	1.2	4
10	Structure formation and mechanical properties of the high-entropy AlCuNiFeCr alloy prepared by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2019, 786, 139-148.	5.5	61
11	A novel microstructural design to improve the oxidation resistance of ZrB2-SiC ultra-high temperature ceramics (UHTCs). Journal of Alloys and Compounds, 2019, 785, 958-964.	5.5	30
12	Spark plasma sintering of ZrB2 powders synthesized by citrate gel method. International Journal of Refractory Metals and Hard Materials, 2019, 78, 127-130.	3.8	8
13	Addition of carbon fibers into B4C infiltrated with molten silicon. Ceramics International, 2019, 45, 168-174.	4.8	11
14	Microstructure and mechanical properties of a directionally solidified Mo-12Hf-24B alloy. Journal of Alloys and Compounds, 2018, 735, 2324-2330.	5.5	7
15	Microstructure and indentation damage resistance of ZrB 2 â€20Âvol.%SiC ipoâ€eutectic composites. International Journal of Applied Ceramic Technology, 2018, 15, 619-624.	2.1	5
16	Low-Temperature Synthesis of Boron Carbide Ceramics. Journal of Superhard Materials, 2018, 40, 236-242.	1.2	3
17	Production and Properties of B4C–TiB2 Composites with Isotropic Eutectic Microstructure. Powder Metallurgy and Metal Ceramics, 2018, 57, 209-214.	0.8	3
18	Floating zone partial re-melting of B4C infiltrated with molten Si. Ceramics International, 2017, 43, 14718-14725.	4.8	10

#	Article	IF	CITATIONS
19	Gerichtet erstarrte Moâ€Zrâ€Bâ€Legierungen. Materialwissenschaft Und Werkstofftechnik, 2017, 48, 1113-1124.	0.9	7
20	Mechanical properties of single crystals of transition metals diborides TMB2 (TM = Sc, Hf, Zr, Ti). Experiment and theory. Journal of Superhard Materials, 2017, 39, 308-318.	1.2	7
21	Near-Eutectic Ternary Mo-Si-B Alloys: Microstructures and Creep Properties. Jom, 2016, 68, 2847-2853.	1.9	27
22	Effect of the crystallization kinetic parameters on the structure and properties of a eutectic alloy of the LaB6–TiB2 system. Journal of Superhard Materials, 2015, 37, 394-401.	1.2	13
23	Microstructure and creep properties of a near-eutectic directionally solidified multiphase Mo–Si–B alloy. Intermetallics, 2014, 48, 28-33.	3.9	43
24	A dense and tough (B4C–TiB2)–B4C â€~composite within a composite' produced by spark plasma sinterir Scripta Materialia, 2014, 71, 17-20.	າ <u>g.</u> 5.2	33
25	Mechanical properties of HfB2 whiskers. Journal of Superhard Materials, 2013, 35, 234-241.	1.2	8
26	Room and high temperature toughening in directionally solidified B4C–TiB2 eutectic composites by Si doping. Journal of Alloys and Compounds, 2013, 570, 94-99.	5.5	32
27	Directionally Solidified Ceramic Eutectics for High-Temperature Applications. , 2013, , 303-322.		9
28	Multiphase Mo-Si-B alloys processed by directional solidification. Materials Research Society Symposia Proceedings, 2012, 1516, 303-308.	0.1	2
29	Hard polycrystalline eutectic composite prepared by spark plasma sintering. Ceramics International, 2012, 38, 3947-3953.	4.8	19
30	The bending strength temperature dependence of the directionally solidified eutectic LaB6–ZrB2 composite. Journal of Alloys and Compounds, 2011, 509, 6123-6129.	5.5	50
31	Mechanism of nucleation and growth of directionally crystallized alloys of the B4C–MeB2 system. Journal of Alloys and Compounds, 2010, 490, 557-561.	5.5	15
32	High-temperature strength of directionally reinforced LaB6–TiB2 composite. Journal of Alloys and Compounds, 2010, 505, 130-134.	5.5	48
33	Phase relations in the LaB6-MoB2 system. Inorganic Materials, 2009, 45, 246-249.	0.8	14
34	Microstructure and high-temperature strength of B4C–TiB2 composite prepared by a crucibleless zone melting method. Journal of Alloys and Compounds, 2009, 485, 677-681.	5.5	61