
Steven Beissinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7814379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Use of Demographic Models of Population Viability in Endangered Species Management. Journal of Wildlife Management, 1998, 62, 821.	1.8	879
2	Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA. Science, 2008, 322, 261-264.	12.6	843
3	Identification of 100 fundamental ecological questions. Journal of Ecology, 2013, 101, 58-67.	4.0	605
4	Limitations of Captive Breeding in Endangered Species Recovery. Conservation Biology, 1996, 10, 338-348.	4.7	581
5	Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19637-19643.	7.1	504
6	Effects of Urbanization on Avian Community Organization. Condor, 1982, 84, 75.	1.6	340
7	Emerging Issues in Population Viability Analysis. Conservation Biology, 2002, 16, 7-19.	4.7	337
8	The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology, 2012, 18, 3279-3290.	9.5	336
9	Managing Climate Change Refugia for Climate Adaptation. PLoS ONE, 2016, 11, e0159909.	2.5	324
10	Detecting range shifts from historical species occurrences: new perspectives on old data. Trends in Ecology and Evolution, 2009, 24, 625-633.	8.7	299
11	Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 2019, 10, 3109.	12.8	285
12	Detecting diversity: emerging methods to estimate species diversity. Trends in Ecology and Evolution, 2014, 29, 97-106.	8.7	260
13	Twoâ€species occupancy models: a new parameterization applied to coâ€occurrence of secretive rails. Ecological Applications, 2010, 20, 2036-2046.	3.8	229
14	Species' traits as predictors of range shifts under contemporary climate change: A review and metaâ€analysis. Global Change Biology, 2017, 23, 4094-4105.	9.5	215
15	Hatching Asynchrony and the Onset of Incubation in Birds, Revisited. , 1995, , 191-270.		208
16	Nest Poaching in Neotropical Parrots. Conservation Biology, 2001, 15, 710-720.	4.7	184
17	Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods in Ecology and Evolution, 2015, 6, 543-556.	5.2	173
18	Collapse of a desert bird community over the past century driven by climate change. Proceedings of the United States of America, 2018, 115, 8597-8602.	7.1	155

2

#	Article	IF	CITATIONS
19	Trans–shell infection by pathogenic micro–organisms reduces the shelf life of non–incubated bird's eggs: a constraint on the onset of incubation?. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2233-2240.	2.6	154
20	Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California. Global Change Biology, 2014, 20, 2841-2855.	9.5	154
21	Minimum viable populations: is there a â€~magic number' for conservation practitioners?. Trends in Ecology and Evolution, 2011, 26, 307-316.	8.7	152
22	Demography of the California Condor: Implications for Reestablishment. Conservation Biology, 2000, 14, 957-967.	4.7	137
23	Modeling Extinction in Periodic Environments: Everglades Water Levels and Snail Kite Population Viability. , 1995, 5, 618-631.		134
24	Incubation reduces microbial growth on eggshells and the opportunity for trans-shell infection. Ecology Letters, 2005, 8, 532-537.	6.4	133
25	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009–31 July 2009. Molecular Ecology Resources, 2009, 9, 1460-1466.	4.8	128
26	Microbial infection affects egg viability and incubation behavior in a tropical passerine. Behavioral Ecology, 2005, 16, 30-36.	2.2	124
27	Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12976-12981.	7.1	124
28	Centennial Decline in the Trophic Level of an Endangered Seabird after Fisheries Decline Conservation Biology, 2006, 20, 470-479.	4.7	122
29	Cooling requirements fueled the collapse of a desert bird community from climate change. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21609-21615.	7.1	122
30	SURVIVAL RATES OF A NEOTROPICAL PARROT: IMPLICATIONS FOR LATITUDINAL COMPARISONS OF AVIAN DEMOGRAPHY. Ecology, 2000, 81, 1351-1370.	3.2	116
31	Why Economics Matters for Endangered Species Protection. Conservation Biology, 1999, 13, 1257-1261.	4.7	115
32	Egg viability as a constraint on hatching synchrony at high ambient temperatures. Journal of Animal Ecology, 1999, 68, 951-962.	2.8	113
33	Applying the Declining Population Paradigm: Diagnosing Causes of Poor Reproduction in the Marbled Murrelet. Conservation Biology, 2004, 18, 1088-1098.	4.7	109
34	Cryptic loss of montane avian richness and high community turnover over 100 years. Ecology, 2013, 94, 598-609.	3.2	109
35	Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science, 2021, 371, 633-636.	12.6	106
36	Spatially heterogeneous impact of climate change on small mammals of montane California. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141857.	2.6	103

#	Article	IF	CITATIONS
37	Genetic factors in threatened species recovery plans on three continents. Frontiers in Ecology and the Environment, 2016, 14, 433-440.	4.0	93
38	Estimating adult sex ratios in nature. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160313.	4.0	90
39	HATCHING ASYNCHRONY, BROOD REDUCTION, AND FOOD LIMITATION IN A NEOTROPICAL PARROT. Ecological Monographs, 1997, 67, 131-154.	5.4	87
40	ESTIMATING DORMANCY AND SURVIVAL OF A RARE HERBACEOUS PERENNIAL USING MARK–RECAPTURE MODELS. Ecology, 2001, 82, 145-156.	3.2	85
41	Climate refugia of snow leopards in High Asia. Biological Conservation, 2016, 203, 188-196.	4.1	84
42	Avian Incubation Inhibits Growth and Diversification of Bacterial Assemblages on Eggs. PLoS ONE, 2009, 4, e4522.	2.5	82
43	Vertical transmission of learned signatures in a wild parrot. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 585-591.	2.6	79
44	Using Logistic Regression to Analyze the Sensitivity of PVA Models: a Comparison of Methods Based on African Wild Dog Models. Conservation Biology, 2001, 15, 1335-1346.	4.7	78
45	Evaluation of Four Methods for Estimating Parrot Population Size. Condor, 1997, 99, 445-457.	1.6	73
46	LIFE HISTORY TRADE-OFFS IN A RARE ORCHID: THE COSTS OF FLOWERING, DORMANCY, AND SPROUTING. Ecology, 2003, 84, 1199-1206.	3.2	69
47	COMBINING DEMOGRAPHIC AND COUNT-BASED APPROACHES TO IDENTIFY SOURCE–SINK DYNAMICS OF A THREATENED SEABIRD. , 2006, 16, 1516-1528.		68
48	Cyclic Drought, Dispersal, and the Conservation of the Snail Kite in Florida: Lessons in Critical Habitat. Conservation Biology, 1989, 3, 302-311.	4.7	66
49	Ecological mechanisms of extinction. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11688-11689.	7.1	66
50	CHARACTERIZING SOURCE–SINK DYNAMICS WITH GENETIC PARENTAGE ASSIGNMENTS. Ecology, 2008, 89, 2746-2759.	3.2	65
51	Mate desertion in the snail kite. Animal Behaviour, 1987, 35, 477-487.	1.9	64
52	THE SHELF LIFE OF BIRD EGGS: TESTING EGG VIABILITY USING A TROPICAL CLIMATE GRADIENT. Ecology, 2005, 86, 2164-2175.	3.2	64
53	Demographic origins of skewed operational and adult sex ratios: perturbation analyses of twoâ€sex models. Ecology Letters, 2009, 12, 129-143.	6.4	63
54	Conservation Report: Report of the AOU Conservation Committee on the Partners in Flight Species Prioritization Plan. Auk, 2000, 117, 549-561.	1.4	62

#	Article	IF	CITATIONS
55	Contact calls are used for individual mate recognition in free-ranging green-rumped parrotlets, Forpus passerinus. Animal Behaviour, 2011, 81, 241-248.	1.9	61
56	Variation in the onset of incubation and its influence on avian hatching success and asynchrony. Animal Behaviour, 2009, 78, 601-613.	1.9	58
57	A practical toolbox for design and analysis of landscape genetics studies. Landscape Ecology, 2014, 29, 1487-1504.	4.2	55
58	Defining priorities for global snow leopard conservation landscapes. Biological Conservation, 2020, 241, 108387.	4.1	55
59	Can Parrots Be Conserved Through Sustainable Harvesting?. BioScience, 1992, 42, 164-173.	4.9	54
60	Do birds differentially distribute antimicrobial proteins within clutches of eggs?. Behavioral Ecology, 2008, 19, 920-927.	2.2	52
61	A robust-design formulation of the incidence function model of metapopulation dynamics applied to two species of rails. Ecology, 2011, 92, 462-474.	3.2	51
62	Incorporating evolutionary processes into population viability models. Conservation Biology, 2015, 29, 755-764.	4.7	51
63	Reproduction and Demography of the Florida Everglade (Snail) Kite. Condor, 1989, 91, 300.	1.6	48
64	Partial Incubation in Birds: Its Occurrence, Function, and Quantification. Auk, 2011, 128, 454-466.	1.4	48
65	Evaluation of species distribution models by resampling of sites surveyed a century ago by Joseph Grinnell. Ecography, 2013, 36, 1017-1031.	4.5	46
66	Incorporating Imperfect Detection into Joint Models of Communities: A response to Warton et al Trends in Ecology and Evolution, 2016, 31, 736-737.	8.7	45
67	Diet–Feather Stable Isotope (δ15N and δ13C) Fractionation in Common Murres and Other Seabirds. Condor, 2007, 109, 451-456.	1.6	44
68	Anthropogenic refugia ameliorate the severe climate-related decline of a montane mammal along its trailing edge. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4279-4286.	2.6	43
69	Experimental Brood Manipulations and the Monoparental Threshold in Snail Kites. American Naturalist, 1990, 136, 20-38.	2.1	42
70	ANATOMY OF A BOTTLENECK: DIAGNOSING FACTORS LIMITING POPULATION GROWTH IN THE PUERTO RICAN PARROT. Ecological Monographs, 2008, 78, 185-203.	5.4	42
71	Differential deposition of antimicrobial proteins in blue tit (Cyanistes caeruleus) clutches by laying order and male attractiveness. Behavioral Ecology and Sociobiology, 2010, 64, 1037-1045.	1.4	42
72	Genetic analyses of historic and modern marbled murrelets suggest decoupling of migration and gene flow after habitat fragmentation. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 697-706.	2.6	42

#	Article	IF	CITATIONS
73	Microbial and environmental effects on avian egg viability: Do tropical mechanisms act in a temperate environment?. Ecology, 2011, 92, 1137-1145.	3.2	42
74	Hunting Behavior, Prey Selection, and Energetics of Snail Kites in Guyana: Consumer Choice by a Specialist. Auk, 1983, 100, 84-92.	1.4	40
75	Mate desertion and reproductive effort in the snail kite. Animal Behaviour, 1987, 35, 1504-1519.	1.9	40
76	RECONSTRUCTING THE HISTORIC DEMOGRAPHY OF AN ENDANGERED SEABIRD. Ecology, 2007, 88, 296-305.	3.2	40
77	Inferring recent historic abundance from current genetic diversity. Molecular Ecology, 2013, 22, 22-40.	3.9	40
78	Climate change refugia and habitat connectivity promote species persistence. Climate Change Responses, 2017, 4, .	2.6	40
79	Innovations in data integration for modeling populations. Ecology, 2019, 100, e02713.	3.2	39
80	DIET–FEATHER STABLE ISOTOPE (Î′15N AND Î′13C) FRACTIONATION IN COMMON MURRES AND OTHER SEABI Condor, 2007, 109, 451.	RDS. 1.6	36
81	Effects of a habitat-altering invader on nesting sparrows: An ecological trap?. Biological Invasions, 2009, 11, 565-575.	2.4	36
82	Null Models for Assessing Ecosystem Conservation Priorities: Threatened Birds as Titers of Threatened Ecosystems in South America. Conservation Biology, 1996, 10, 1343-1352.	4.7	34
83	Social constraints on the onset of incubation in a neotropical parrot: a nestbox addition experiment. Animal Behaviour, 1998, 55, 21-32.	1.9	34
84	Conservation Planning for US National Forests: Conducting Comprehensive Biodiversity Assessments. BioScience, 2003, 53, 1217.	4.9	34
85	Why Are Species' Traits Weak Predictors of Range Shifts?. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 47-66.	8.3	34
86	Estimating rates of population change for a neotropical parrot with ratio, mark-recapture and matrix methods. Journal of Applied Statistics, 2002, 29, 589-607.	1.3	33
87	Dispersal polymorphisms from natal phenotype–environment interactions have carryâ€over effects on lifetime reproductive success of a tropical parrot. Ecology Letters, 2012, 15, 1218-1229.	6.4	33
88	Extinction, Recovery, and the Endangered Species Act. , 2001, , 51-71.		32
89	Impact of cattle grazing on the occupancy of a cryptic, threatened rail. Ecological Applications, 2012, 22, 1655-1664.	3.8	32
90	Modelling effects of nonbreeders on population growth estimates. Journal of Animal Ecology, 2017, 86, 75-87.	2.8	31

#	Article	IF	CITATIONS
91	At-Sea Density Monitoring of Marbled Murrelets in Central California: Methodological Considerations. Condor, 1997, 99, 743-755.	1.6	30
92	Characterizing dispersal patterns in a threatened seabird with limited genetic structure. Molecular Ecology, 2009, 18, 5074-5085.	3.9	29
93	Individual and Temporal Variation in Inland Flight Behavior of Marbled Murrelets: Implications for Population Monitoring. Condor, 2004, 106, 344-353.	1.6	28
94	Experimental analysis of mass change in female green-rumped parrotlets (Forpus passerinus): the role of male cooperation. Behavioral Ecology, 1995, 6, 192-198.	2.2	27
95	INDIVIDUAL AND TEMPORAL VARIATION IN INLAND FLIGHT BEHAVIOR OF MARBLED MURRELETS: IMPLICATIONS FOR POPULATION MONITORING. Condor, 2004, 106, 344.	1.6	27
96	Resource allocation varies with parental sex and brood size in the asynchronously hatching green-rumped parrotlet (Forpus passerinus). Behavioral Ecology and Sociobiology, 2009, 63, 637-647.	1.4	27
97	Nesting Habitat Characteristics of the Marbled Murrelet in Central California Redwood Forests. Journal of Wildlife Management, 2006, 70, 939-946.	1.8	26
98	Opposing selection and environmental variation modify optimal timing of breeding. Proceedings of the United States of America, 2013, 110, 15365-15370.	7.1	26
99	Local Survival of Marbled Murrelets in Central California: Roles of Oceanographic Processes, Sex, and Radiotagging. Journal of Wildlife Management, 2006, 70, 78-88.	1.8	25
100	Meeting Reproductive Demands in a Dynamic Upwelling System: Foraging Strategies of a Pursuit-Diving Seabird, the Marbled Murrelet. Condor, 2009, 111, 120-134.	1.6	25
101	Erosion of refugia in the Sierra Nevada meadows network with climate change. Ecosphere, 2017, 8, e01673.	2.2	23
102	Variation in the Onset of Incubation in a Neotropical Parrot. Condor, 1999, 101, 752-761.	1.6	22
103	Age Ratios as Estimators of Productivity: Testing Assumptions on a Threatened Seabird, The Marbled Murrelet (Brachyramphus Marmoratus). Auk, 2007, 124, 224-240.	1.4	22
104	Uncloaking a cryptic, threatened rail with molecular markers: origins, connectivity and demography of a recently-discovered population. Conservation Genetics, 2010, 11, 2409-2418.	1.5	22
105	Revisiting methods for estimating parrot abundance and population size. Emu, 2018, 118, 67-79.	0.6	22
106	On the Limited Breeding Opportunities Hypothesis for Avian Clutch Size. American Naturalist, 1996, 147, 655-658.	2.1	21
107	AGE RATIOS AS ESTIMATORS OF PRODUCTIVITY: TESTING ASSUMPTIONS ON A THREATENED SEABIRD, THE MARBLED MURRELET (BRACHYRAMPHUS MARMORATUS). Auk, 2007, 124, 224.	1.4	21
108	Distribution of California Black Rails in the Sierra Nevada foothills. Journal of Field Ornithology, 2008, 79, 381-390.	0.5	21

#	Article	IF	CITATIONS
109	Factors shaping the ontogeny of vocal signals in a wild parrot. Journal of Experimental Biology, 2013, 216, 338-45.	1.7	21
110	Artificial water catchments influence wildlife distribution in the Mojave Desert. Journal of Wildlife Management, 2019, 83, 855-865.	1.8	21
111	Alternative Foods of a Diet Specialist, the Snail Kite. Auk, 1990, 107, 327-333.	1.4	20
112	Apple Snail (Pomacea doliodes) and Freshwater Crab (Dilocarcinus dentatus) Population Fluctuations in the Llanos of Venezuela. Biotropica, 1993, 25, 206.	1.6	20
113	Using Logistic Regression to Analyze the Sensitivity of PVA Models: a Comparison of Methods Based on African Wild Dog Models. Conservation Biology, 2001, 15, 1335-1346.	4.7	20
114	Water Levels Affect Nest Success of the Snail Kite in Florida: AIC and the Omission of Relevant Candidate Models. Condor, 2002, 104, 208-215.	1.6	19
115	A century of climate and landâ€use change cause species turnover without loss of beta diversity in California's Central Valley. Global Change Biology, 2018, 24, 5882-5894.	9.5	19
116	Anisogamy Overcome: Female Strategies in Snail Kites. American Naturalist, 1987, 129, 486-500.	2.1	18
117	Egg mass in an asynchronously hatching parrot: does variation offset constraints imposed by laying order?. Oecologia, 2005, 144, 318-326.	2.0	17
118	California black rails depend on irrigation-fed wetlands in the Sierra Nevada foothills. California Agriculture, 2010, 64, 85-93.	0.8	17
119	Assessing parental effort in a Neotropical parrot: a comparison of methods. Animal Behaviour, 1999, 57, 73-79.	1.9	16
120	Conservation Report: The AOU Conservation Committee Review of the Biology, Status, and Management of Cape Sable Seaside Sparrows: Final Report. Auk, 2000, 117, 1093-1115.	1.4	16
121	Does Risk of Nest Failure or Adult Predation Influence Hatching Patterns of the Green-Rumped Parrotlet?. Condor, 2001, 103, 85-97.	1.6	16
122	EFFECTS OF RAPID FLIGHT-FEATHER MOLT ON POSTBREEDING DISPERSAL IN A PURSUIT-DIVING SEABIRD. Auk, 2008, 125, 113-123.	1.4	16
123	Inferring the timing of longâ€distance dispersal between Rail metapopulations using genetic and isotopic assignments. Ecological Applications, 2017, 27, 208-218.	3.8	16
124	The rescue effect and inference from isolation–extinction relationships. Ecology Letters, 2020, 23, 598-606.	6.4	16
125	The AOU Conservation Committee Review of the Biology, Status, and Management of Cape Sable Seaside Sparrows: Final Report. Auk, 2000, 117, 1093-1115.	1.4	15
126	Modeling Approaches in Avian Conservation and the Role of Field Biologists. Ornithological Monographs, 2006, , iii-56.	1.3	15

#	Article	IF	CITATIONS
127	Microbial and environmental effects on avian egg viability: Do tropical mechanisms act in a temperate environment?. Ecology, 2011, 92, 1137-1145.	3.2	15
128	Predation and infanticide influence ideal free choice by a parrot occupying heterogeneous tropical habitats. Oecologia, 2010, 163, 385-393.	2.0	14
129	WEAK ASSOCIATION BETWEEN MEASURES OF HEALTH AND REPRODUCTIVE SUCCESS IN GREEN-RUMPED PARROTLETS (FORPUS PASSERINUS) IN VENEZUELA. Auk, 2004, 121, 717.	1.4	13
130	WATER LEVELS AFFECT NEST SUCCESS OF THE SNAIL KITE IN FLORIDA: AIC AND THE OMISSION OF RELEVANT CANDIDATE MODELS. Condor, 2002, 104, 208.	1.6	12
131	Why Grow Slowly in a Dangerous Place? Postnatal Growth, Thermoregulation, and Energetics of Nestling Green-Rumped Parrotlets (<i>Forpus passerinus</i>). Auk, 2010, 127, 558-570.	1.4	12
132	Sex ratios. Current Biology, 2017, 27, R790-R792.	3.9	12
133	Digging the pupfish out of its hole: risk analyses to guide harvest of Devils Hole pupfish for captive breeding. PeerJ, 2014, 2, e549.	2.0	12
134	Integrating social and ecological data to model metapopulation dynamics in coupled human and natural systems. Ecology, 2019, 100, e02711.	3.2	11
135	Limitations of Captive Breeding: Reply to Gippoliti and Carpaneto. Conservation Biology, 1997, 11, 808-810.	4.7	10
136	Biomeâ€scale signatures of landâ€use change on raptor abundance: insights from singleâ€visit detectionâ€based models. Journal of Applied Ecology, 2017, 54, 1268-1278.	4.0	10
137	In transition: Avian biogeographic responses to a century of climate change across desert biomes. Global Change Biology, 2020, 26, 3268-3284.	9.5	10
138	Validating dispersal distances inferred from autoregressive occupancy models with genetic parentage assignments. Journal of Animal Ecology, 2018, 87, 691-702.	2.8	9
139	Environmental and ecological correlates of avian field metabolic rate and water flux. Functional Ecology, 2020, 34, 811-821.	3.6	9
140	Quantity versus Quality in California Condor Reintroduction: Reply to Beres and Starfield. Conservation Biology, 2001, 15, 1449-1451.	4.7	9
141	Evaluating at-sea sampling designs for Marbled Murrelets using a spatially explicit model. Ecological Modelling, 2006, 196, 329-344.	2.5	8
142	Environmental determinants of total evaporative water loss in birds at multiple temperatures. Auk, 2020, 137, .	1.4	8
143	Survival Rates of a Neotropical Parrot: Implications for Latitudinal Comparisons of Avian Demography. Ecology, 2000, 81, 1351.	3.2	8
144	Application of Population Viability Analysis to Landscape Conservation Planning. , 2009, , 33-49.		7

#	Article	IF	CITATIONS
145	Keeping your cool: thermoregulatory performance and plasticity in desert cricetid rodents. Journal of Experimental Biology, 2022, 225, .	1.7	7
146	Cloning and characterization of 29 tetranucleotide and two dinucleotide polymorphic microsatellite loci from the endangered marbled murrelet (Brachyramphus marmoratus). Molecular Ecology Notes, 2006, 6, 241-244.	1.7	6
147	No safety in numbers. Frontiers in Ecology and the Environment, 2011, 9, 486-486.	4.0	6
148	Hatching asynchrony in birds. Trends in Ecology and Evolution, 1997, 12, 112.	8.7	5
149	A general target for MVPs: unsupported and unnecessary. Trends in Ecology and Evolution, 2011, 26, 620-622.	8.7	5
150	Ontogeny of the adrenocortical response in an extremely altricial bird. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2019, 331, 521-529.	1.9	5
151	Fund the Biological Survey Unit. Science, 2018, 359, 754-755.	12.6	4
152	Report of the AOU Conservation Committee on the Partners in Flight Species Prioritization Plan. Auk, 2000, 117, 549-561.	1.4	3
153	The California Condor: a Flagship Adrift. Conservation Biology, 2001, 15, 1197-1199.	4.7	3
154	Unresolved Problems in the Condor Recovery Program: Response to Risebrough. Conservation Biology, 2002, 16, 1158-1159.	4.7	3
155	Endangered Species Recovery Criteria: Reconciling Conflicting Views. BioScience, 2015, 65, 121-122.	4.9	3
156	Hatching Asynchrony, Brood Reduction, and Food Limitation in a Neotropical Parrot. Ecological Monographs, 1997, 67, 131.	5.4	3
157	Why Economics Matters for Endangered Species Protection and the ESA. , 2001, , 365-373.		2
158	Quantity versus Quality in California Condor Reintroduction: Reply to Beres and Starfield. Conservation Biology, 2001, 15, 1449-1451.	4.7	1
159	Collapse of a desert bird community over the past century driven by climate change. Parks Stewardship Forum, 2020, 36, .	0.5	1
160	Vocal babbling in a wild parrot shows life history and endocrine affinities with human infants. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	1
161	Monitoring and Science: Comfortable Bedfellows. Conservation Biology, 1995, 9, 465-467.	4.7	0
162	Voices of New World Parrots. Auk, 2003, 120, 571-571.	1.4	0

#	Article	IF	CITATIONS
163	Weak Association Between Measures of Health and Reproductive Success in Green-Rumped Parrotlets (Forpus Passerinus) in Venezuela. Auk, 2004, 121, 717-725.	1.4	0