Mohamed Goune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7813597/publications.pdf

Version: 2024-02-01

172207 168136 2,993 71 29 53 citations h-index g-index papers 71 71 71 2710 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Science and Technology of Advanced Materials, 2017, 18, 584-610.	2.8	660
2	Evolution of microstructure and mechanical properties of medium Mn steels during double annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 542, 31-39.	2.6	197
3	Kinetics of vanadium carbonitride precipitation in steel: A computer model. Acta Materialia, 2005, 53, 3359-3367.	3.8	160
4	Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels. Materials Science and Engineering Reports, 2015, 92, 1-38.	14.8	136
5	Damage and fracture of dual-phase steels: Influence of martensite volume fraction. Materials Science & Sci	2.6	104
6	Interphase precipitation in vanadium-alloyed steels: Strengthening contribution and morphological variability with austenite to ferrite transformation. Acta Materialia, 2014, 64, 78-92.	3.8	90
7	Mechanism of porosity formation and influence on mechanical properties in selective laser melting of Ti-6Al-4V parts. Materials and Design, 2018, 156, 480-493.	3.3	90
8	Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling. International Journal of Plasticity, 2016, 80, 187-203.	4.1	87
9	Lead-free nanocomposite piezoelectric nanogenerator film for biomechanical energy harvesting. Nano Energy, 2021, 81, 105661.	8.2	79
10	ALEMI: A Ten-Year History of Discussions of Alloying-Element Interactions with Migrating Interfaces. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3703-3718.	1.1	70
11	Microstructural design of new high conductivity – high strength Cu-based alloy. Journal of Alloys and Compounds, 2015, 633, 42-47.	2.8	61
12	Internal stresses and carbon enrichment in austenite of Quenching and Partitioning steels from high energy X-ray diffraction experiments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 710, 245-250.	2.6	58
13	Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor. Journal of Materials Science: Materials in Electronics, 2019, 30, 6430-6438.	1.1	58
14	Hydrothermal Sintering for Densification of Silica. Evidence for the Role of Water. Journal of the European Ceramic Society, 2018, 38, 1860-1870.	2.8	53
15	Selecting non-isothermal heat treatment schedules for precipitation hardening systems: An example of coupled process–property optimization. Acta Materialia, 2007, 55, 213-223.	3 . 8	49
16	Enhancement of dielectric properties of lead-free BCZT ferroelectric ceramics by grain size engineering. Superlattices and Microstructures, 2019, 127, 109-117.	1.4	47
17	Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe-0.1C-3.5Mn Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3375-3386.	1.1	45
18	Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. Journal of Advanced Ceramics, 2020, 9, 210-219.	8.9	45

#	Article	IF	CITATIONS
19	Characterization and Modeling of Manganese Effect on Strength and Strain Hardening of Martensitic Carbon Steels. ISIJ International, 2013, 53, 1076-1080.	0.6	44
20	Thermally-stable high energy storage performances and large electrocaloric effect over a broad temperature span in lead-free BCZT ceramic. RSC Advances, 2020, 10, 30746-30755.	1.7	43
21	Numerical modeling of interstitial diffusion in binary systems. Application to iron nitriding. Materials Science & Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 302, 246-257.	2.6	41
22	Banded structure in Dual Phase steels in relation with the austenite-to-ferrite transformation mechanisms. Journal of Materials Science, 2011, 46, 7026-7038.	1.7	41
23	Microstructural heterogeneity and its relationship to the strength of martensite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 638, 329-339.	2.6	34
24	A Criterion for the Change from Fast to Slow Regime of Cementite Dissolution in Fe–C–Mn Steels. Journal of Materials Science and Technology, 2012, 28, 728-736.	5.6	32
25	Effects of Q&P Processing Conditions on Austenite Carbon Enrichment Studied by In Situ High-Energy X-ray Diffraction Experiments. Metals, 2017, 7, 232.	1.0	32
26	Thermodynamic and structural studies on nitrided Fe–1.62%Mn and Fe–0.56%V alloys. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2003, 351, 23-30.	2.6	31
27	In Situ Investigation of the Iron Carbide Precipitation Process in a Fe-C-Mn-Si Q&P Steel. Materials, 2018, 11, 1087.	1.3	31
28	Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. Journal of Materials Science: Materials in Electronics, 2020, 31, 10096-10104.	1.1	31
29	Application of interrupted cooling experiments to study the mechanism of bainitic ferrite formation in steels. Acta Materialia, 2013, 61, 4512-4523.	3.8	30
30	Effect of interstitial carbon distribution and nickel substitution on the tetragonality of martensite: A first-principles study. Intermetallics, 2017, 89, 92-99.	1.8	30
31	Very-low temperature synthesis of pure and crystalline lead-free Ba .85 Ca .15 Zr .1 Ti .9 O 3 ceramic. Ceramics International, 2018, 44, 10997-11000.	2.3	30
32	Reflections on the Analysis of Interfaces and Grain Boundaries by Atom Probe Tomography. Microscopy and Microanalysis, 2020, 26, 247-257.	0.2	30
33	Nitride precipitation in compositionally heterogeneous alloys: Nucleation, growth and coarsening during nitriding. Journal of Crystal Growth, 2012, 341, 53-60.	0.7	26
34	Critical factors governing the thermal stability of austenite in an ultra-fined grained Medium-Mn steel. Philosophical Magazine Letters, 2017, 97, 125-131.	0.5	24
35	Analysis of the stagnant stage in diffusional phase transformations starting from austenite–ferrite mixtures. Computational Materials Science, 2012, 55, 34-43.	1.4	23
36	Static and dynamical ageing processes at room temperature in a Fe25Ni0.4C virgin martensite: effect of C redistribution at the nanoscale. Philosophical Magazine Letters, 2013, 93, 68-76.	0.5	23

3

#	Article	IF	CITATIONS
37	Microstructure refinement of dual-phase steels with 3.5wt% Mn: Influence on plastic and fracture behavior. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2015, 638, 78-89.	2.6	23
38	Superledge Model for Interphase Precipitation During Austenite-to-Ferrite Transformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5351-5361.	1.1	22
39	Distribution of Carbon in Martensite During Quenching and Tempering of Dual Phase Steels and Consequences for Damage Properties. ISIJ International, 2013, 53, 1215-1223.	0.6	20
40	Atom probe tomography evidence of nitrogen excess in the matrix of nitrided Fe–Cr. Philosophical Magazine Letters, 2010, 90, 793-800.	0.5	19
41	Application of the stagnant stage concept for monitoring Mn partitioning at the austenite-ferrite interface in the intercritical region for Fe–Mn–C alloys. Philosophical Magazine Letters, 2012, 92, 547-555.	0.5	18
42	Competitive precipitation of amorphous and crystalline silicon nitride in ferrite: Interaction between structure, morphology, and stress relaxation. Acta Materialia, 2015, 93, 218-234.	3.8	17
43	Carbon diffusivity and kinetics of spinodal decomposition of martensite in a model Fe-Ni-C alloy. Materials Letters, 2018, 214, 213-216.	1.3	17
44	Identification and characterization of a novel Mn–N nitride formed in Fe–Mn–N alloy. Journal of Applied Crystallography, 2003, 36, 103-108.	1.9	14
45	Investigation of a Ferrite/Silicon Nitride Composite Concept Aimed at Automotive Applications. Steel Research International, 2012, 83, 590-593.	1.0	14
46	Monitoring tantalum nitride thin film structure by reactive RF magnetron sputtering: Influence of processing parameters. Surface and Coatings Technology, 2015, 284, 192-197.	2.2	14
47	Microstructure Evolution and Competitive Reactions during Quenching and Partitioning of a Model Fe–C–Mn–Si Alloy. Metals, 2020, 10, 137.	1.0	14
48	QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS. Image Analysis and Stereology, 2010, 29, 85.	0.4	13
49	Linear stability analysis of a $\hat{I}^3\hat{a}$ \in 2-Fe4N nitride layer growing in pure iron. Computational Materials Science, 2006, 38, 126-135.	1.4	12
50	A flexible self-poled piezocomposite nanogenerator based on H ₂ (Zr _{0.1} Ti _{0.9}) ₃ O ₇ nanowires and polylactic acid biopolymer. Sustainable Energy and Fuels, 2022, 6, 1983-1991.	2.5	12
51	Morphogenesis mechanisms in the hydrothermal growth of lead-free BCZT nanostructured multipods. CrystEngComm, 2021, 23, 5249-5256.	1.3	11
52	Modelling of the interaction between phase transformation and precipitation: Coupled kinetics in microalloyed multiphase steels. Computational Materials Science, 2012, 55, 127-135.	1.4	10
53	Kinetics of bainite transformation in heterogeneous microstructures. Materials Letters, 2012, 67, 187-189.	1.3	9
54	Carbon heterogeneities in austenite during Quenching & Descriptioning (Q& Camp; P) process revealed by in situ High Energy X-Ray Diffraction (HEXRD) experiments. Scripta Materialia, 2020, 181, 108-114.	2.6	9

#	Article	IF	CITATIONS
55	Time-evolution of microstructure and mechanical behaviour of double annealed medium Mn steel. Materials Science and Technology, 2019, 35, 2076-2083.	0.8	8
56	Novel lead-free BCZT-based ceramic with thermally-stable recovered energy density and increased energy storage efficiency. Journal of Materiomics, 2022, 8, 873-881.	2.8	8
57	Nucleation and growth of carbo-nitride nanoparticles in $\hat{I}\pm$ -Fe-based alloys and associated interfacial process. Nanotechnology Reviews, 2015, 4, .	2.6	7
58	Mechanism of Si3N4 precipitation in nitrided Fe-Si alloys: A novel example of particle-stimulated-nucleation. Materials Letters, 2017, 189, 25-27.	1.3	6
59	Study of the effect of cold deformation on the austenite formation. Revue De Metallurgie, 2006, 103, 465-471.	0.3	5
60	Banded structures in dual-phase steels $\hat{a} \in A$ novel characterization method. International Journal of Materials Research, 2011, 102, 200-207.	0.1	5
61	Enhanced near-ambient temperature energy storage and electrocaloric effect in the lead-free BaTi0.89Sn0.11O3 ceramic synthesized by sol–gel method. Journal of Materials Science: Materials in Electronics, 2022, 33, 12900-12911.	1.1	5
62	Precipitation of copper in ferrite: Prediction of the strengthening kinetics. Revue De Metallurgie, 2004, 101, 71-78.	0.3	3
63	Transmission electron microscopy investigation of acicular ferrite precipitation in $\hat{I}^3 \hat{a} \in ^2$ -Fe4N nitride. Materials Characterization, 2010, 61, 1245-1251.	1.9	3
64	Dual-Phase Steels: The First Family of Advanced High Strength Steels. , 2022, , 37-62.		3
65	The Role of Dispersions in Modeling the Kinetics of Phase Transformations. Solid State Phenomena, 0, 172-174, 279-284.	0.3	2
66	Numerical Investigations of the Effects of Substitutional Elements on the Interface Conditions During Partitioning in Quenching and Partitioning Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2568-2572.	1.1	2
67	Contribution of Local Analysis Techniques for the Characterization of Iron and Alloying Elements in Nitrides: Consequences on the Precipitation Process in Fe–Si and Fe–Cr Nitrided Alloys. Materials, 2018, 11, 1409.	1.3	2
68	Sensitivity And Quantitativity In Atom Probe Tomography. Microscopy and Microanalysis, 2009, 15, 258-259.	0.2	1
69	Link between Microstructure and Mechanical Behavior of Double Annealed Medium Mn Steel. Materials Science Forum, 2018, 941, 524-529.	0.3	0
70	The Basics to Better Understand Couplings in Physical Metallurgy. , 2019, , 25-48.		0
71	Low-temperature synthesis and characterization of lead-free BaTi0.89Sn0.11O3 piezoelectric powders. Materials Today: Proceedings, 2022, , .	0.9	0