Petko Alov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812888/publications.pdf Version: 2024-02-01

DETKO ALOV

#	Article	IF	CITATIONS
1	Hybrid Classification/Regression Approach to QSAR Modeling of Stoichiometric Antiradical Capacity Assays' Endpoints. Molecules, 2022, 27, 2084.	3.8	0
2	A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors. Frontiers in Pharmacology, 2022, 13, 831791.	3.5	3
3	New Potential Pharmacological Targets of Plant-Derived Hydroxyanthraquinones from Rubia spp Molecules, 2022, 27, 3274.	3.8	1
4	Exploring Applicability of the InterCriteria Analysis to Evaluate theÂPerformance of MOE and GOLD ScoringAFunctions. Studies in Computational Intelligence, 2021, , 198-208.	0.9	2
5	In silico Studies of Biologically Active Molecules. Studies in Computational Intelligence, 2021, , 421-451.	0.9	1
6	Cytotoxicity and Microbicidal Activity of Commonly Used Organic Solvents: A Comparative Study and Application to a Standardized Extract from Vaccinium macrocarpon. Toxics, 2021, 9, 92.	3.7	17
7	Natural Chain-Breaking Antioxidants and Their Synthetic Analogs as Modulators of Oxidative Stress. Antioxidants, 2021, 10, 624.	5.1	12
8	InterCriteria Analysis Implementation for Exploration of the Performance of Various Docking Scoring Functions. Studies in Computational Intelligence, 2021, , 88-98.	0.9	5
9	Computational Analysis of Chemical Space of Natural Compounds Interacting with Sulfotransferases. Molecules, 2021, 26, 6360.	3.8	3
10	Dual SMO/BRAF Inhibition by Flavonolignans from Silybum marianum. Antioxidants, 2020, 9, 384.	5.1	13
11	In silico and in vivo studies of Astragalus glycyphylloides saponin(s) with relevance to metabolic syndrome modulation. Food and Chemical Toxicology, 2019, 130, 317-325.	3.6	2
12	Molecular Modeling Approach to Study the PPARγ–Ligand Interactions. Methods in Molecular Biology, 2019, 1966, 261-289.	0.9	1
13	Advances in the prediction of gastrointestinal absorption: Quantitative Structure-Activity Relationship (QSAR) modelling of PAMPA permeability. Computational Toxicology, 2019, 10, 51-59.	3.3	12
14	In vitro and in silico studies of the membrane permeability of natural flavonoids from Silybum marianum (L.) Gaertn. and their derivatives. Phytomedicine, 2019, 53, 79-85.	5.3	18
15	Molecular determinants of PPARÎ ³ partial agonism and related in silico/in vivo studies of natural saponins as potential type 2 diabetes modulators. Food and Chemical Toxicology, 2018, 112, 47-59.	3.6	9
16	Optimized Structure-based Methodology for Studying PPARÎ ³ Partial Agonists. International Journal Bioautomation, 2018, 22, 65-72.	0.3	0
17	Molecular dynamics simulation of the human estrogen receptor alpha: contribution to the pharmacophore of the agonists. Mathematics and Computers in Simulation, 2017, 133, 124-134.	4.4	14
18	The application of molecular modelling in the safety assessment of chemicals: A case study on ligand-dependent PPARÎ3 dysregulation. Toxicology, 2017, 392, 140-154.	4.2	21

Ρετκό Αιον

#	Article	IF	CITATIONS
19	Natural modulators of nonalcoholic fatty liver disease: Mode of action analysis and in silico ADME-Tox prediction. Toxicology and Applied Pharmacology, 2017, 337, 45-66.	2.8	14
20	Quantitative structure-skin permeability relationships. Toxicology, 2017, 387, 27-42.	4.2	69
21	ADME/Tox Properties and Biochemical Interactions of Silybin Congeners: In silico Study. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	4
22	ADME/Tox Properties and Biochemical Interactions of Silybin Congeners: In silico Study. Natural Product Communications, 2017, 12, 175-178.	0.5	4
23	Computational Studies of Free Radical-Scavenging Properties of Phenolic Compounds. Current Topics in Medicinal Chemistry, 2015, 15, 85-104.	2.1	75
24	Modes-of-Action Related to Repeated Dose Toxicity: Tissue-Specific Biological Roles of PPAR <i>Ĵ³</i> Ligand-Dependent Dysregulation in Nonalcoholic Fatty Liver Disease. PPAR Research, 2014, 2014, 1-13.	2.4	20
25	Molecular Modelling Study of the PPARÎ ³ Receptor in Relation to the Mode of Action/Adverse Outcome Pathway Framework for Liver Steatosis. International Journal of Molecular Sciences, 2014, 15, 7651-7666.	4.1	38
26	Computational Studies of Free Radical-Scavenging Properties of Phenolic Compounds. Current Topics in Medicinal Chemistry, 2014, , .	2.1	0
27	Toward better understanding of liver steatosis MoA: Molecular modelling study of PPAR gamma receptor. Toxicology Letters, 2013, 221, S85.	0.8	2
28	Recent Advances in the Molecular Modeling of Estrogen Receptor-Mediated Toxicity. Advances in Protein Chemistry and Structural Biology, 2011, 85, 217-251.	2.3	9
29	In vitro effects of calcium channel blockers and beta-adrenergic blocking agents on microsomal lipid peroxidation and cytochrome p-450 content. Experimental and Toxicologic Pathology, 1999, 51, 277-281.	2.1	3
30	Effect of multiple administration of calcium antagonists on lipid peroxidation in rat liver microsomes. General Pharmacology, 1996, 27, 891-893.	0.7	2
31	Role of Iron Ion Chelation by Quinones in Their Reduction, OH-Radical Generation, and Lipid Peroxidation. Biochemical and Biophysical Research Communications, 1993, 195, 113-119.	2.1	22
32	Influence of long-term treatment with the Ca2+-antagonists nifedipine, verapamil, flunarizine and with the calmodulin antagonist trifluoperazine on β-adrenoceptors in rat cerebral cortex. General Pharmacology, 1990, 21, 149-152.	0.7	7