
Tomas SereviÄius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812684/publications.pdf Version: 2024-02-01

TOMAS SEDEVIÄNIS

#	Article	IF	CITATIONS
1	Tuning of HOMO-LUMO localization for achieving thermally activated delayed fluorescence. Journal of Luminescence, 2022, 241, 118473.	1.5	14
2	Temporal Dynamics of Solid-State Thermally Activated Delayed Fluorescence: Disorder or Ultraslow Solvation?. Journal of Physical Chemistry Letters, 2022, 13, 1839-1844.	2.1	12
3	Single-exponential solid-state delayed fluorescence decay in TADF compounds with minimized conformational disorder. Journal of Materials Chemistry C, 2021, 9, 836-841.	2.7	21
4	TADF Parameters in the Solid State: An Easy Way to Draw Wrong Conclusions. Journal of Physical Chemistry A, 2021, 125, 1637-1641.	1.1	16
5	Conformational disorder enabled emission phenomena in heavily doped TADF films. Physical Chemistry Chemical Physics, 2021, 24, 313-320.	1.3	8
6	Minimization of solid-state conformational disorder in donor–acceptor TADF compounds. Physical Chemistry Chemical Physics, 2020, 22, 265-272.	1.3	42
7	Achieving Submicrosecond Thermally Activated Delayed Fluorescence Lifetime and Highly Efficient Electroluminescence by Fine-Tuning of the Phenoxazine–Pyrimidine Structure. ACS Applied Materials & Interfaces, 2020, 12, 10727-10736.	4.0	32
8	Optimization of the carbazole–pyrimidine linking pattern for achieving efficient TADF. Journal of Materials Chemistry C, 2020, 8, 11192-11200.	2.7	18
9	Achieving efficient deep-blue TADF in carbazole-pyrimidine compounds. Organic Electronics, 2020, 82, 105723.	1.4	19
10	Suppression of Charge Transfer States in Aryl-Substituted 9,9′-Bianthryl Derivatives. Journal of Physical Chemistry C, 2019, 123, 27344-27354.	1.5	6
11	Emission wavelength dependence on the rISC rate in TADF compounds with large conformational disorder. Chemical Communications, 2019, 55, 1975-1978.	2.2	31
12	Origin of dual emission in σ-bridged donor–acceptor TADF compounds. Journal of Materials Chemistry C, 2019, 7, 12601-12609.	2.7	32
13	Room temperature phosphorescence <i>vs.</i> thermally activated delayed fluorescence in carbazole–pyrimidine cored compounds. Journal of Materials Chemistry C, 2018, 6, 11128-11136.	2.7	32
14	Inactivation of bacterial biofilms using visible-light-activated unmodified ZnO nanorods. Nanotechnology, 2017, 28, 365701.	1.3	10
15	Triplet–Triplet Annihilation in 9,10-Diphenylanthracene Derivatives: The Role of Intersystem Crossing and Exciton Diffusion. Journal of Physical Chemistry C, 2017, 121, 8515-8524.	1.5	47
16	Effect of reverse intersystem crossing rate to suppress efficiency roll-off in organic light-emitting diodes with thermally activated delayed fluorescence emitters. Chemical Physics Letters, 2016, 644, 62-67.	1.2	96
17	Heterocyclic heptacene analogs – 8H-16,17-epoxydinaphto[2,3-c:2′,3′-g]carbazoles as charge transport materials. Dyes and Pigments, 2016, 124, 133-144.	2.0	10
18	Impact of non-symmetric 2,9,10-aryl substitution on charge transport and optical properties of anthracene derivatives. Dyes and Pigments, 2015, 122, 147-159.	2.0	10

Tomas SereviÄłus

#	Article	IF	CITATIONS
19	Non-symmetric 9,10-diphenylanthracene-based deep-blue emitters with enhanced charge transport properties. Physical Chemistry Chemical Physics, 2014, 16, 7089-7101.	1.3	45
20	Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole–triazine derivative. Physical Chemistry Chemical Physics, 2013, 15, 15850.	1.3	115
21	Photophysical properties of 2-phenylanthracene and its conformationally-stabilized derivatives. Dyes and Pigments, 2013, 98, 304-315.	2.0	20
22	Growth, properties and sensor applications of low temperature grown ZnO nanorods. Lithuanian Journal of Physics, 2011, 51, 309-312.	0.1	3
23	Luminescence of ZnO crystals under surface and bulk excitation regimes. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2671-2673.	0.8	4
24	Photoluminescence studies of MBEâ€grown ZnO and MgZnO epitaxial layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2668-2670.	0.8	5
25	Optical Characterization of MBE-Grown ZnO Epilayers. Advanced Materials Research, 0, 222, 86-89.	0.3	8
26	Substituent effect on TADF properties of 2-modified 4,6-bis(3,6-di- <i>tert</i> -butyl-9-carbazolyl)-5-methylpyrimidines. Beilstein Journal of Organic Chemistry, 0, 18, 497-507	1.3	2

Chemistry, 0, 18, 497-507.