
Cornelia C Bergmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TNFRSF1B Gene Variants and Related Soluble TNFR2 Levels Impact Resilience in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 638922.	1.7	7
2	Neuronal Ablation of Alpha/Beta Interferon (IFN-α/β) Signaling Exacerbates Central Nervous System Viral Dissemination and Impairs IFN-γ Responsiveness in Microglia/Macrophages. Journal of Virology, 2020, 94,	1.5	13
3	lfit2 deficiency restricts microglial activation and leukocyte migration following murine coronavirus (m-CoV) CNS infection. PLoS Pathogens, 2020, 16, e1009034.	2.1	23
4	Intercellular Communication Is Key for Protective IFN <i>α</i> / <i>β</i> Signaling During Viral Central Nervous System Infection. Viral Immunology, 2019, 32, 1-6.	0.6	11
5	Dynamics of Virus-Specific Memory B Cells and Plasmablasts following Viral Infection of the Central Nervous System. Journal of Virology, 2019, 93, .	1.5	9
6	Alpha/Beta Interferon (IFN-α/β) Signaling in Astrocytes Mediates Protection against Viral Encephalomyelitis and Regulates IFN-γ-Dependent Responses. Journal of Virology, 2018, 92, .	1.5	41
7	Fine Tuning the Cytokine Storm by IFN and IL-10 Following Neurotropic Coronavirus Encephalomyelitis. Frontiers in Immunology, 2018, 9, 3022.	2.2	59
8	Distinct Gene Profiles of Bone Marrow-Derived Macrophages and Microglia During Neurotropic Coronavirus-Induced Demyelination. Frontiers in Immunology, 2018, 9, 1325.	2.2	20
9	Blockade of sustained tumor necrosis factor in a transgenic model of progressive autoimmune encephalomyelitis limits oligodendrocyte apoptosis and promotes oligodendrocyte maturation. Journal of Neuroinflammation, 2018, 15, 121.	3.1	27
10	Viral-induced suppression of self-reactive T cells: Lessons from neurotropic coronavirus-induced demyelination. Journal of Neuroimmunology, 2017, 308, 12-16.	1.1	25
11	An optimized method for enumerating CNS derived memory B cells during viral-induced inflammation. Journal of Neuroscience Methods, 2017, 285, 58-68.	1.3	4
12	Protective Humoral Immunity in the Central Nervous System Requires Peripheral CD19-Dependent Germinal Center Formation following Coronavirus Encephalomyelitis. Journal of Virology, 2017, 91, .	1.5	8
13	Activated GL7+ B cells are maintained within the inflamed CNS in the absence of follicle formation during viral encephalomyelitis. Brain, Behavior, and Immunity, 2017, 60, 71-83.	2.0	15
14	Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathogens, 2017, 13, e1006195.	2.1	184
15	Differential Regulation of Self-reactive CD4+ T Cells in Cervical Lymph Nodes and Central Nervous System during Viral Encephalomyelitis. Frontiers in Immunology, 2016, 7, 370.	2.2	19
16	Sustained TNF production by central nervous system infiltrating macrophages promotes progressive autoimmune encephalomyelitis. Journal of Neuroinflammation, 2016, 13, 46.	3.1	41
17	CXCL13 promotes isotype-switched B cell accumulation to the central nervous system during viral encephalomyelitis. Brain, Behavior, and Immunity, 2016, 54, 128-139.	2.0	23
18	Interleukinâ€10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia, 2015, 63, 2106-2120.	2.5	31

CORNELIA C BERGMANN

#	Article	IF	CITATIONS
19	Self-reactive CD4+ T cells activated during viral-induced demyelination do not prevent clinical recovery. Journal of Neuroinflammation, 2015, 12, 207.	3.1	16
20	Astrocyte response to IFN-Î ³ limits IL-6-mediated microglia activation and progressive autoimmune encephalomyelitis. Journal of Neuroinflammation, 2015, 12, 79.	3.1	66
21	Distinct <scp>CD</scp> 4 Tâ€cell effects on primary versus recall <scp>CD</scp> 8 Tâ€cell responses during viral encephalomyelitis. Immunology, 2015, 144, 374-386.	2.0	7
22	Myd88 Initiates Early Innate Immune Responses and Promotes CD4 T Cells during Coronavirus Encephalomyelitis. Journal of Virology, 2015, 89, 9299-9312.	1.5	15
23	<i>Ifit2</i> Deficiency Results in Uncontrolled Neurotropic Coronavirus Replication and Enhanced Encephalitis via Impaired Alpha/Beta Interferon Induction in Macrophages. Journal of Virology, 2014, 88, 1051-1064.	1.5	47
24	Progression From lgD ⁺ lgM ⁺ to lsotype-Switched B Cells Is Site Specific during Coronavirus-Induced Encephalomyelitis. Journal of Virology, 2014, 88, 8853-8867.	1.5	20
25	IL-27 Limits Central Nervous System Viral Clearance by Promoting IL-10 and Enhances Demyelination. Journal of Immunology, 2014, 193, 285-294.	0.4	39
26	PKR mediated regulation of inflammation and IL-10 during viral encephalomyelitis. Journal of Neuroimmunology, 2014, 270, 1-12.	1.1	14
27	IL-21 optimizes T cell and humoral responses in the central nervous system during viral encephalitis. Journal of Neuroimmunology, 2013, 263, 43-54.	1.1	18
28	Role of CD25+ CD4+ T cells in acute and persistent coronavirus infection of the central nervous system. Virology, 2013, 447, 112-120.	1.1	19
29	MMP-Independent Role of TIMP-1 at the Blood Brain Barrier during Viral Encephalomyelitis. ASN Neuro, 2013, 5, AN20130033.	1.5	15
30	Intrathecal Humoral Immunity to Encephalitic RNA Viruses. Viruses, 2013, 5, 732-752.	1.5	20
31	Astrocyte-Derived CXCL10 Drives Accumulation of Antibody-Secreting Cells in the Central Nervous System during Viral Encephalomyelitis. Journal of Virology, 2013, 87, 3382-3392.	1.5	60
32	CD4 T Cells Promote CD8 T Cell Immunity at the Priming and Effector Site during Viral Encephalitis. Journal of Virology, 2012, 86, 2416-2427.	1.5	82
33	Lipopolysaccharide-Induced Microglial Activation and Neuroprotection against Experimental Brain Injury Is Independent of Hematogenous TLR4. Journal of Neuroscience, 2012, 32, 11706-11715.	1.7	354
34	IFN-γ protects from lethal IL-17 mediated viral encephalomyelitis independent of neutrophils. Journal of Neuroinflammation, 2012, 9, 104.	3.1	20
35	Enhanced CD8 T-cell anti-viral function and clinical disease in B7-H1-deficient mice requires CD4 T cells during encephalomyelitis. Journal of Neuroinflammation, 2012, 9, 269.	3.1	20
36	Oligodendroglia are limited in type I interferon induction and responsiveness <i>in vivo</i> . Clia, 2012, 60, 1555-1566.	2.5	33

CORNELIA C BERGMANN

#	Article	IF	CITATIONS
37	IFN-Î ³ Signaling to Astrocytes Protects from Autoimmune Mediated Neurological Disability. PLoS ONE, 2012, 7, e42088.	1.1	70
38	Interferon-Induced Ifit2/ISG54 Protects Mice from Lethal VSV Neuropathogenesis. PLoS Pathogens, 2012, 8, e1002712.	2.1	156
39	CXCR3-Dependent Plasma Blast Migration to the Central Nervous System during Viral Encephalomyelitis. Journal of Virology, 2011, 85, 6136-6147.	1.5	53
40	MMP9 deficiency does not decrease blood–brain barrier disruption, but increases astrocyte MMP3 expression during viral encephalomyelitis. Glia, 2011, 59, 1770-1781.	2.5	24
41	Factors Supporting Intrathecal Humoral Responses following Viral Encephalomyelitis. Journal of Virology, 2011, 85, 2589-2598.	1.5	44
42	Shifting Hierarchies of Interleukin-10-Producing T Cell Populations in the Central Nervous System during Acute and Persistent Viral Encephalomyelitis. Journal of Virology, 2011, 85, 6702-6713.	1.5	32
43	Astrocyte-Restricted Ablation of Interleukin-17-Induced Act1-Mediated Signaling Ameliorates Autoimmune Encephalomyelitis. Immunity, 2010, 32, 414-425.	6.6	265
44	Gamma Interferon Signaling in Oligodendrocytes Is Critical for Protection from Neurotropic Coronavirus Infection. Journal of Virology, 2010, 84, 3111-3115.	1.5	12
45	Monocytes Regulate T Cell Migration through the Glia Limitans during Acute Viral Encephalitis. Journal of Virology, 2010, 84, 4878-4888.	1.5	62
46	Enhanced Antiviral T Cell Function in the Absence of B7-H1 Is Insufficient To Prevent Persistence but Exacerbates Axonal Bystander Damage during Viral Encephalomyelitis. Journal of Immunology, 2010, 185, 5607-5618.	0.4	40
47	Interleukin-12 (IL-12), but Not IL-23, Deficiency Ameliorates Viral Encephalitis without Affecting Viral Control. Journal of Virology, 2009, 83, 5978-5986.	1.5	44
48	RNase L Mediated Protection from Virus Induced Demyelination. PLoS Pathogens, 2009, 5, e1000602.	2.1	51
49	Target-Dependent B7-H1 Regulation Contributes to Clearance of Central Nervous Sysyem Infection and Dampens Morbidity. Journal of Immunology, 2009, 182, 5430-5438.	0.4	70
50	IL-15 independent maintenance of virus-specific CD8+ T cells in the CNS during chronic infection. Journal of Neuroimmunology, 2009, 207, 32-38.	1.1	5
51	Induction of class I antigen processing components in oligodendroglia and microglia during viral encephalomyelitis. Glia, 2008, 56, 426-435.	2.5	38
52	Neuroimmunology of central nervous system viral infections: the cells, molecules and mechanisms involved. Current Opinion in Pharmacology, 2008, 8, 472-479.	1.7	47
53	CD4 T Cells Contribute to Virus Control and Pathology following Central Nervous System Infection with Neurotropic Mouse Hepatitis Virus. Journal of Virology, 2008, 82, 2130-2139.	1.5	38
54	Memory CD4 ⁺ T-Cell-Mediated Protection from Lethal Coronavirus Encephalomyelitis. Journal of Virology, 2008, 82, 12432-12440.	1.5	41

CORNELIA C BERGMANN

#	Article	IF	CITATIONS
55	Type I Interferons Are Essential in Controlling Neurotropic Coronavirus Infection Irrespective of Functional CD8 T Cells. Journal of Virology, 2008, 82, 300-310.	1.5	95
56	MHC Class I Expression and CD8 T Cell Function: Towards the Cell Biology of T-APC Interactions in the Infected Brain. , 2008, , 277-306.		0
57	Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis. Glia, 2007, 55, 1169-1177.	2.5	44
58	Inhibition of Interferon-Î ³ Signaling in Oligodendroglia Delays Coronavirus Clearance without Altering Demyelination. American Journal of Pathology, 2006, 168, 796-804.	1.9	50
59	Coronavirus infection of the central nervous system: host–virus stand-off. Nature Reviews Microbiology, 2006, 4, 121-132.	13.6	364
60	Mouse hepatitis virus pathogenesis in the central nervous system is independent of IL-15 and natural killer cells. Virology, 2006, 350, 206-215.	1.1	31
61	Altered neuroantigen-specific cytokine secretion in a Th2 environment reduces experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2006, 178, 30-39.	1.1	12
62	CNS viral infection diverts homing of antibody-secreting cells from lymphoid organs to the CNS. European Journal of Immunology, 2006, 36, 603-612.	1.6	66
63	Liver X receptor activation decreases the severity of experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2006, 84, 1225-1234.	1.3	92
64	Vaccine-Induced Memory CD8+T Cells Cannot Prevent Central Nervous System Virus Reactivation. Journal of Immunology, 2006, 176, 3062-3069.	0.4	15
65	Coronavirus Immunity: From T Cells to B Cells. Advances in Experimental Medicine and Biology, 2006, 581, 341-349.	0.8	3
66	Glia Expression of MHC During CNS Infection by Neurotropic Coronavirus. Advances in Experimental Medicine and Biology, 2006, 581, 543-546.	0.8	4
67	IL-15-independent antiviral function of primary and memory CD8+ T cells. Virology, 2005, 331, 338-348.	1.1	8
68	Expression of a dominant negative IFN-Î ³ receptor on mouse oligodendrocytes. Glia, 2005, 51, 22-34.	2.5	27
69	Astrocyte expression of a dominant-negative interferon-Î ³ receptor. Journal of Neuroscience Research, 2005, 82, 20-31.	1.3	11
70	The Role of T Cells in Corona-Virus-Induced Demyelination. , 2005, , 747-757.		0
71	Virus-Specific and Bystander CD8 T Cells Recruited during Virus-Induced Encephalomyelitis. Journal of Virology, 2005, 79, 4700-4708.	1.5	44
72	Expression of Matrix Metalloproteinases and Their Tissue Inhibitor during Viral Encephalitis. Journal of Virology, 2005, 79, 4764-4773.	1.5	56

#	Article	IF	CITATIONS
73	Expression of the Mouse Hepatitis Virus Receptor by Central Nervous System Microglia. Journal of Virology, 2004, 78, 7828-7832.	1.5	28
74	Differential Regulation of Primary and Secondary CD8+ T Cells in the Central Nervous System. Journal of Immunology, 2004, 173, 6265-6273.	0.4	35
75	Perforin and Gamma Interferon-Mediated Control of Coronavirus Central Nervous System Infection by CD8 T Cells in the Absence of CD4 T Cells. Journal of Virology, 2004, 78, 1739-1750.	1.5	100
76	Kinetics of Virus-Specific CD8 + -T-Cell Expansion and Trafficking following Central Nervous System Infection. Journal of Virology, 2003, 77, 2775-2778.	1.5	94
77	Efficient Induction of Primary and Secondary T Cell-Dependent Immune Responses In Vivo in the Absence of Functional IL-2 and IL-15 Receptors. Journal of Immunology, 2003, 170, 236-242.	0.4	52
78	Perforin-Mediated Effector Function Within the Central Nervous System Requires IFN-Î ³ -Mediated MHC Up-Regulation. Journal of Immunology, 2003, 170, 3204-3213.	0.4	85
79	CC Chemokine Ligand 3 (CCL3) Regulates CD8 + -T-Cell Effector Function and Migration following Viral Infection. Journal of Virology, 2003, 77, 4004-4014.	1.5	111
80	Control of Central Nervous System Viral Persistence by Neutralizing Antibody. Journal of Virology, 2003, 77, 4670-4678.	1.5	60
81	Mechanisms of Central Nervous System Viral Persistence: the Critical Role of Antibody and B Cells. Journal of Immunology, 2002, 168, 1204-1211.	0.4	117
82	Recruitment Kinetics and Composition of Antibody-Secreting Cells Within the Central Nervous System Following Viral Encephalomyelitis. Journal of Immunology, 2002, 168, 2922-2929.	0.4	55
83	The Art of Survival During Viral Persistence. Journal of NeuroVirology, 2002, 8, 53-58.	1.0	8
84	Natural Killer T Cell Ligand α-Galactosylceramide Enhances Protective Immunity Induced by Malaria Vaccines. Journal of Experimental Medicine, 2002, 195, 617-624.	4.2	321
85	Impaired T Cell Immunity in B Cell-Deficient Mice Following Viral Central Nervous System Infection. Journal of Immunology, 2001, 167, 1575-1583.	0.4	66
86	MHV Infection of the CNS: Mechanisms of Immune-Mediated Control. Viral Immunology, 2001, 14, 1-18.	0.6	85
87	CD8 T Cell Mediated Immunity to Neurotropic MHV Infection. Advances in Experimental Medicine and Biology, 2001, 494, 299-308.	0.8	12
88	IFN-γ Secreted by Virus-Specific CD8+ T Cells Contribute to CNS Viral Clearance. Advances in Experimental Medicine and Biology, 2001, 494, 335-340.	0.8	5
89	Acute CNS Infection is Insufficient to Mediate Chronic T Cell Retention. Advances in Experimental Medicine and Biology, 2001, 494, 349-354.	0.8	2
90	Maintenance of CD8+ T-Cell Memory Following Infection with Recombinant Sindbis and Vaccinia Viruses. Virology, 2000, 270, 54-64.	1.1	17

Cornelia C Bergmann

#	Article	IF	CITATIONS
91	Contributions of Fas-Fas Ligand Interactions to the Pathogenesis of Mouse Hepatitis Virus in the Central Nervous System. Journal of Virology, 2000, 74, 2447-2450.	1.5	71
92	Contributions of CD8+ T Cells and Viral Spread to Demyelinating Disease. Journal of Immunology, 2000, 164, 4080-4088.	0.4	52
93	Sequential Cleavage by Metallopeptidases and Proteasomes Is Involved in Processing HIV-1 ENV Epitope for Endogenous MHC Class I Antigen Presentation. Journal of Immunology, 2000, 164, 5070-5077.	0.4	32
94	Role of Viral Persistence in Retaining CD8+ T Cells within the Central Nervous System. Journal of Virology, 2000, 74, 7903-7910.	1.5	84
95	Microglia Exhibit Clonal Variability in Eliciting Cytotoxic T Lymphocyte Responses Independent of Class I Expression. Cellular Immunology, 1999, 198, 44-53.	1.4	13
96	Variability of Persisting MHV RNA Sequences Constituting Immune and Replication-Relevant Domains. Virology, 1998, 244, 563-572.	1.1	20
97	Recombinant Sindbis Viruses Expressing a Cytotoxic T-Lymphocyte Epitope of a Malaria Parasite or of Influenza Virus Elicit Protection against the Corresponding Pathogen in Mice. Journal of Virology, 1998, 72, 6907-6910.	1.5	79
98	Transcription and Translation of Proinflammatory Cytokines Following JHMV Infection. Advances in Experimental Medicine and Biology, 1995, 380, 173-178.	0.8	7
99	Location of Antibody Epitopes within the Mouse Hepatitis Virus Nucleocapsid Protein. Virology, 1994, 202, 146-163.	1.1	34
100	Coronavirus Translational Regulation: Leader Affects mRNA Efficiency. Virology, 1994, 202, 621-630.	1.1	87
101	Effects of Mouse Hepatitis Virus Infection on Host Cell Metabolism. Advances in Experimental Medicine and Biology, 1994, 342, 111-116.	0.8	11
102	JHM Virus-Specific Cytotoxic T Cells Derived from the Central Nervous System. Advances in Experimental Medicine and Biology, 1994, 342, 419-423.	0.8	3
103	An endogenously synthesized decamer peptide efficiently primes cytotoxic T cells specific for the HIV-1 envelope glycoprotein. European Journal of Immunology, 1993, 23, 2777-2781.	1.6	30
104	Rotavirus VP6 modified for expression on the plasma membrane forms arrays and exhibits enhanced immunogenicity. Virology, 1992, 189, 423-434.	1.1	14
105	Mouse hepatitis virus nucleocapsid protein-specific cytotoxic T lymphocytes are Ld restricted and specific for the carboxy terminus. Virology, 1992, 189, 217-224.	1.1	52
106	Interaction of rotavirus cores with the nonstructural glycoprotein NS28. Virology, 1989, 171, 98-107.	1.1	118
107	Expression, secretion and processing of hirudin in E. coli using the alkaline phosphatase signal sequence. FEBS Letters, 1986, 202, 373-377.	1.3	74
108	Chemical Synthesis and Expression of a Gene Coding for Hirudin, the Thrombin-Specific Inhibitor from the Leech <i>Hirudo medicinalis</i> . Biological Chemistry Hoppe-Seyler, 1986, 367, 731-740.	1.4	61

0

#	Article	IF	CITATIONS
109	Binding of tRNA in Different Functional States to <i>Escherichia coli</i> Ribosomes as Measured by Velocity Sedimentation. FEBS Journal, 1982, 127, 525-529.	0.2	21

110 The Immune Response to Coronaviruses. , 0, , 339-349.