
Eduardo de Miguel Poch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 2005, 39, 4501-4512.	1.9	854
2	Origin and patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Atmospheric Environment, 1997, 31, 2733-2740.	1.9	496
3	Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 2007, 66, 505-513.	4.2	487
4	A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environment International, 2003, 29, 563-573.	4.8	416
5	A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environmental Geochemistry and Health, 2011, 33, 103-123.	1.8	232
6	Distribution of Heavy Metals in the Street Dusts and Soils of an Industrial City in Northern Spain. Archives of Environmental Contamination and Toxicology, 2003, 44, 160-170.	2.1	185
7	The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Science of the Total Environment, 1998, 215, 113-122.	3.9	131
8	Remediation of aged diesel contaminated soil by alkaline activated persulfate. Science of the Total Environment, 2018, 622-623, 41-48.	3.9	119
9	Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere, 2015, 135, 312-318.	4.2	81
10	Risk assessment of soils contaminated by mercury mining, Northern Spain. Journal of Environmental Monitoring, 2011, 13, 128-136.	2.1	75
11	Sources and pathways of trace elements in urban environments: a multi-elemental qualitative approach. Science of the Total Environment, 1999, 235, 355-357.	3.9	64
12	Determination of the geochemical background in a metal mining site: example of the mining district of Linares (South Spain). Journal of Geochemical Exploration, 2007, 94, 19-29.	1.5	61
13	Spatial and temporal variations of trace element distribution in soils and street dust of an industrial town in NW Spain: 15years of study. Science of the Total Environment, 2015, 524-525, 93-103.	3.9	53
14	Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain). Science of the Total Environment, 2005, 340, 137-148.	3.9	48
15	Influence of industry on the geochemical urban environment of Mieres (Spain) and associated health risk. Environmental Geochemistry and Health, 2003, 25, 307-323.	1.8	45
16	Multivariate analysis of contamination in the mining district of Linares (Jaén, Spain). Applied Geochemistry, 2008, 23, 2324-2336.	1.4	43
17	Indoor Dust Metal Loadings: A Human Health Risk Assessment. Exposure and Health, 2018, 10, 41-50.	2.8	42
18	Assessment of oral bioaccessibility of arsenic in playground soil in Madrid (Spain): A three-method comparison and implications for risk assessment. Chemosphere, 2011, 84, 1386-1391.	4.2	40

#	Article	IF	CITATIONS
19	The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil. Environmental Geochemistry and Health, 2012, 34, 677-687.	1.8	36
20	Soil contamination from urban and industrial activity: example of the mining district of Linares (southern Spain). Environmental Geology, 2008, 54, 669-677.	1.2	34
21	Probabilistic meta-analysis of risk from the exposure to Hg in artisanal gold mining communities in Colombia. Chemosphere, 2014, 108, 183-189.	4.2	28
22	Environmental risk assessment of cobalt and manganese from industrial sources in an estuarine system. Environmental Geochemistry and Health, 2018, 40, 737-748.	1.8	28
23	Field validation of radon monitoring as a screening methodology for NAPL-contaminated sites. Applied Geochemistry, 2008, 23, 2753-2758.	1.4	26
24	Risk assessment from exposure to arsenic, antimony, and selenium in urban gardens (Madrid, Spain). Environmental Toxicology and Chemistry, 2017, 36, 544-550.	2.2	24
25	Human-health probabilistic risk assessment: the role of exposure factors in an urban garden scenario. Landscape and Urban Planning, 2019, 185, 191-199.	3.4	24
26	Prediction of the flooding of a mining reservoir in NW Spain. Journal of Environmental Management, 2016, 184, 219-228.	3.8	16
27	Mineralogical and environmental features of the asturian copper mining district (Spain): A review. Engineering Geology, 2018, 243, 206-217.	2.9	15
28	Applicability and limitations of the radon-deficit technique for the preliminary assessment of sites contaminated with complex mixtures of organic chemicals: A blind field-test. Environment International, 2020, 138, 105591.	4.8	11
29	The paradigm of Circular Mining in the world: the Iberian Pyrite Belt as a potential scenario of interaction. Environmental Earth Sciences, 2018, 77, 1.	1.3	10
30	Application of the Visman method to the design of a soil sampling campaign in the mining district of Linares (Spain). Journal of Geochemical Exploration, 2007, 92, 73-82.	1.5	9
31	Field performance of the radon-deficit technique to detect and delineate a complex DNAPL accumulation in a multi-layer soil profile. Environmental Pollution, 2021, 269, 116200.	3.7	9
32	A Bayesian Approach to Probabilistic Risk Assessment in Municipal Playgrounds. Archives of Environmental Contamination and Toxicology, 2009, 56, 165-172.	2.1	8
33	Applicability of radon emanometry in lithologically discontinuous sites contaminated by organic chemicals. Environmental Science and Pollution Research, 2018, 25, 20255-20263.	2.7	7
34	Urban Allotment Gardens for the Biomonitoring of Atmospheric Trace Element Pollution. Journal of Environmental Quality, 2019, 48, 518-525.	1.0	6
35	Modelling the Transference of Trace Elements between Environmental Compartments in Abandoned Mining Areas. International Journal of Environmental Research and Public Health, 2020, 17, 5117.	1.2	5
36	Unconventional gas resources in the <scp>Cantabrian Zone</scp> (<scp>NW Spain</scp>): A comprehensive preliminary assessment. Geological Journal, 2019, 54, 2608-2620.	0.6	3

#	Article	IF	CITATIONS
37	1D_RnDPM: A freely available 222Rn production, diffusion, and partition model to evaluate confounding factors in the radon-deficit technique. Science of the Total Environment, 2022, 807, 150815.	3.9	3
38	Using Bayesian inference to manage uncertainty in probabilistic risk assessments in urban environments. Alliance for Global Sustainability Bookseries, 2007, , 551-557.	0.2	0