
James W B Bainbridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Gene Therapy on Visual Function in Leber's Congenital Amaurosis. New England Journal of Medicine, 2008, 358, 2231-2239.	13.9	1,793
2	Long-Term Effect of Gene Therapy on Leber's Congenital Amaurosis. New England Journal of Medicine, 2015, 372, 1887-1897.	13.9	635
3	Restoration of vision after transplantation of photoreceptors. Nature, 2012, 485, 99-103.	13.7	447
4	LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature, 2013, 499, 306-311.	13.7	403
5	Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nature Biotechnology, 2013, 31, 741-747.	9.4	345
6	Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nature Genetics, 2000, 25, 306-310.	9.4	295
7	Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet, The, 2017, 389, 2193-2203.	6.3	279
8	Repair of the degenerate retina by photoreceptor transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 354-359.	3.3	246
9	In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Therapy, 2001, 8, 1665-1668.	2.3	186
10	The Drusenlike Phenotype in Aging <i>Ccl2</i> -Knockout Mice Is Caused by an Accelerated Accumulation of Swollen Autofluorescent Subretinal Macrophages. , 2009, 50, 5934.		186
11	Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors. Stem Cell Reports, 2017, 9, 820-837.	2.3	186
12	Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology, 2018, 125, 1765-1775.	2.5	177
13	Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Human Molecular Genetics, 2011, 20, 3161-3175.	1.4	157
14	Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Therapy, 2002, 9, 320-326.	2.3	149
15	Retinal Structure and Function in Achromatopsia. Ophthalmology, 2014, 121, 234-245.	2.5	145
16	Gene therapy progress and prospects: the eye. Gene Therapy, 2006, 13, 1191-1197.	2.3	130
17	AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Molecular Therapy, 2003, 8, 188-195.	3.7	128
18	Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2Rd2/Rd2 model of retinal degeneration. Gene Therapy, 2003, 10, 523-527.	2.3	127

#	Article	IF	CITATIONS
19	Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Therapy, 2005, 12, 694-701.	2.3	119
20	Targeted Disruption of Outer Limiting Membrane Junctional Proteins (Crb1 and ZO-1) Increases Integration of Transplanted Photoreceptor Precursors into the Adult Wild-Type and Degenerating Retina. Cell Transplantation, 2010, 19, 487-503.	1.2	115
21	AAV-mediated gene therapy for retinal disorders: from mouse to man. Gene Therapy, 2008, 15, 849-857.	2.3	111
22	Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Human Molecular Genetics, 2009, 18, 2099-2114.	1.4	107
23	The Tight Junction Associated Signalling Proteins ZO-1 and ZONAB Regulate Retinal Pigment Epithelium Homeostasis in Mice. PLoS ONE, 2010, 5, e15730.	1.1	104
24	Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow-sorted Crx-positive donor cells. Human Molecular Genetics, 2010, 19, 4545-4559.	1.4	96
25	Transplantation of Photoreceptor Precursors Isolated via a Cell Surface Biomarker Panel from Embryonic Stem Cell-Derived Self-Forming Retina. Stem Cells, 2015, 33, 2469-2482.	1.4	96
26	Transplanted Donor- or Stem Cell-Derived Cone Photoreceptors Can Both Integrate and Undergo Material Transfer in an Environment-Dependent Manner. Stem Cell Reports, 2018, 10, 406-421.	2.3	96
27	HIF-1alpha and HIF-2alpha Are Differentially Activated in Distinct Cell Populations in Retinal Ischaemia. PLoS ONE, 2010, 5, e11103.	1.1	90
28	Topographical characterization of cone photoreceptors and the area centralis of the canine retina. Molecular Vision, 2008, 14, 2518-27.	1.1	84
29	Achromatopsia: clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic Genetics, 2018, 39, 149-157.	0.5	82
30	Intraocular Oxygen Distribution in Advanced Proliferative Diabetic Retinopathy. American Journal of Ophthalmology, 2011, 152, 406-412.e3.	1.7	81
31	Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179. Nature Communications, 2015, 6, 6006.	5.8	79
32	Long-term evaluation of retinal function inPrph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. Journal of Gene Medicine, 2003, 5, 757-764.	1.4	77
33	A Randomized Trial to Assess Functional and Structural Effects of Ranibizumab versus Laser in Diabetic Macular Edema (the LUCIDATE Study). American Journal of Ophthalmology, 2014, 157, 960-970.e2.	1.7	75
34	Prospects for retinal gene replacement therapy. Trends in Genetics, 2009, 25, 156-165.	2.9	71
35	Long-Term Preservation of Cones and Improvement in Visual Function Following Gene Therapy in a Mouse Model of Leber Congenital Amaurosis Caused by Guanylate Cyclase-1 Deficiency. Human Gene Therapy, 2011, 22, 1179-1190.	1.4	70
36	Hsp90 inhibition protects against inherited retinal degeneration. Human Molecular Genetics, 2014, 23, 2164-2175.	1.4	70

#	Article	IF	CITATIONS
37	Oxygen Sensing in Retinal Health and Disease. Ophthalmologica, 2012, 227, 115-131.	1.0	68
38	A Prospective Longitudinal Study of Retinal Structure and Function in Achromatopsia. , 2014, 55, 5733.		68
39	Isolation of Human Photoreceptor Precursors via a Cell Surface Marker Panel from Stem Cell-Derived Retinal Organoids and Fetal Retinae. Stem Cells, 2018, 36, 709-722.	1.4	65
40	Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Reports, 2021, 35, 109022.	2.9	65
41	Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65. Gene Therapy, 2016, 23, 857-862.	2.3	64
42	Gene therapy in the second eye of RPE65-deficient dogs improves retinal function. Gene Therapy, 2011, 18, 53-61.	2.3	61
43	EIAV vector-mediated delivery of endostatin or angiostatin inhibits angiogenesis and vascular hyperpermeability in experimental CNV. Gene Therapy, 2006, 13, 1153-1165.	2.3	59
44	Repeatability of Spectralis OCT Measurements of Macular Thickness and Volume in Diabetic Macular Edema. , 2012, 53, 7754.		59
45	Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina. Gene Therapy, 2003, 10, 1336-1344.	2.3	56
46	Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Translational Vision Science and Technology, 2020, 9, 2.	1.1	56
47	Gene therapy for neovascular age-related macular degeneration: rationale, clinical trials and future directions. British Journal of Ophthalmology, 2021, 105, 151-157.	2.1	56
48	Subretinal delivery of adenoâ€associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. Journal of Gene Medicine, 2009, 11, 486-497.	1.4	55
49	Retinal Nonperfusion Characteristics on Ultra-Widefield Angiography in Eyes With Severe Nonproliferative Diabetic Retinopathy and Proliferative Diabetic Retinopathy. JAMA Ophthalmology, 2019, 137, 626.	1.4	55
50	Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling. PLoS ONE, 2012, 7, e35551.	1.1	54
51	Kinetics of transgene expression in mouse retina following sub-retinal injection of recombinant adeno-associated virus. Vision Research, 2002, 42, 541-549.	0.7	53
52	RPE65 gene therapy slows cone loss in Rpe65-deficient dogs. Gene Therapy, 2013, 20, 545-555.	2.3	53
53	VEGF165-induced vascular permeability requires NRP1 for ABL-mediated SRC family kinase activation. Journal of Experimental Medicine, 2017, 214, 1049-1064.	4.2	53
54	Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Therapy, 2012, 19, 154-161.	2.3	52

James W B Bainbridge

#	Article	IF	CITATIONS
55	Retinal gene therapy. British Medical Bulletin, 2018, 126, 13-25.	2.7	52
56	AAV-mediated knockdown of Peripherin-2 in vivo using miRNA-based hairpins. Gene Therapy, 2010, 17, 486-493.	2.3	51
57	Assessing a Novel Depot Delivery Strategy for Noninvasive Administration of VEGF/PDGF RTK Inhibitors for Ocular Neovascular Disease. , 2013, 54, 1490.		49
58	Gene therapy for ocular angiogenesis. Clinical Science, 2003, 104, 561-575.	1.8	45
59	Complement Factor H Is Critical in the Maintenance of Retinal Perfusion. American Journal of Pathology, 2009, 175, 412-421.	1.9	45
60	Assessment and In Vivo Scoring of Murine Experimental Autoimmune Uveoretinitis Using Optical Coherence Tomography. PLoS ONE, 2013, 8, e63002.	1.1	45
61	The severity of retinal pathology in homozygous Crb1rd8/rd8 mice is dependent on additional genetic factors. Human Molecular Genetics, 2015, 24, 128-141.	1.4	44
62	Natural History Study of Retinal Structure, Progression, and Symmetry Using Ellipzoid Zone Metrics in RPGR-Associated Retinopathy. American Journal of Ophthalmology, 2019, 198, 111-123.	1.7	43
63	Ccl2, Cx3cr1 and Ccl2/Cx3cr1 chemokine deficiencies are not sufficient to cause age-related retinal degeneration. Experimental Eye Research, 2013, 107, 80-87.	1.2	42
64	Flow cytometric analysis of inflammatory and resident myeloid populations in mouse ocular inflammatory models. Experimental Eye Research, 2016, 151, 160-170.	1.2	42
65	Lentiviral-vector-mediated expression of murine IL-1 receptor antagonist or IL-10 reduces the severity of endotoxin-induced uveitis. Gene Therapy, 2008, 15, 1478-1488.	2.3	39
66	Myeloid-Derived Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor Are Dispensable for Ocular Neovascularization—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 19-24.	1.1	39
67	Longitudinal Assessment of Retinal Structure in Achromatopsia Patients With Long-Term Follow-up. , 2018, 59, 5735.		39
68	Hypoxia-regulated transgene expression in experimental retinal and choroidal neovascularization. Gene Therapy, 2003, 10, 1049-1054.	2.3	38
69	Success in sight: The eyes have it! Ocular gene therapy trials for LCA look promising. Gene Therapy, 2008, 15, 1191-1192.	2.3	37
70	Vascular endothelial growth factor-A165b ameliorates outer-retinal barrier and vascular dysfunction in the diabetic retina. Clinical Science, 2017, 131, 1225-1243.	1.8	36
71	Retinal Nonperfusion in the Posterior Pole Is Associated With Increased Risk of Neovascularization in Central Retinal Vein Occlusion. American Journal of Ophthalmology, 2017, 182, 118-125.	1.7	34

Absence of Chx10Causes Neural Progenitors to Persist in the Adult Retina. , 2006, 47, 386.

33

#	Article	IF	CITATIONS
73	Delivery of anti-angiogenic molecular therapies for retinal disease. Drug Discovery Today, 2010, 15, 272-282.	3.2	33
74	Endogenous Erythropoietin Protects Neuroretinal Function in Ischemic Retinopathy. American Journal of Pathology, 2012, 180, 1726-1739.	1.9	33
75	IL-4 Regulates Specific Arg-1+ Macrophage sFlt-1–Mediated Inhibition of Angiogenesis. American Journal of Pathology, 2015, 185, 2324-2335.	1.9	33
76	Apelin Is Required for Non-Neovascular Remodeling in the Retina. American Journal of Pathology, 2012, 180, 399-409.	1.9	31
77	CD200R signaling inhibits pro-angiogenic gene expression by macrophages and suppresses choroidal neovascularization. Scientific Reports, 2013, 3, 3072.	1.6	31
78	Preserved Outer Retina in AIPL1 Leber's Congenital Amaurosis: Implications for Gene Therapy. Ophthalmology, 2015, 122, 862-864.	2.5	31
79	Face-down positioning or posturing after macular hole surgery. The Cochrane Library, 2011, , CD008228.	1.5	30
80	Characterization of Visual Function, Interocular Variability and Progression Using Static Perimetry–Derived Metrics in <i>RPGR</i> -Associated Retinopathy. , 2018, 59, 2422.		30
81	Successful Gene Therapy in Older Rpe65-Deficient Dogs Following Subretinal Injection of an Adeno-Associated Vector Expressing <i>RPE65</i> . Human Gene Therapy, 2013, 24, 883-893.	1.4	29
82	Mechanistic Evaluation of Panretinal Photocoagulation Versus Aflibercept in Proliferative Diabetic Retinopathy: CLARITY Substudy. , 2018, 59, 4277.		29
83	Transcriptional Profiling Uncovers Human Hyalocytes as a Unique Innate Immune Cell Population. Frontiers in Immunology, 2020, 11, 567274.	2.2	27
84	Retinal Structure in <i>RPE65</i> -Associated Retinal Dystrophy. , 2020, 61, 47.		27
85	A peptide encoded by exon 6 of VEGF (EG3306) inhibits VEGF-induced angiogenesis in vitro and ischaemic retinal neovascularisation in vivo. Biochemical and Biophysical Research Communications, 2003, 302, 793-799.	1.0	26
86	Novel CCR3 Antagonists Are Effective Mono- and Combination Inhibitors of Choroidal Neovascular Growth and Vascular Permeability. American Journal of Pathology, 2015, 185, 2534-2549.	1.9	24
87	Enhanced Ccl2-Ccr2 signaling drives more severe choroidal neovascularization with aging. Neurobiology of Aging, 2016, 40, 110-119.	1.5	24
88	Facedown Positioning Following Surgery for Large Full-Thickness Macular Hole. JAMA Ophthalmology, 2020, 138, 725.	1.4	24
89	Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development. Development (Cambridge), 2012, 139, 2340-2350.	1.2	23
90	Educational paper. European Journal of Pediatrics, 2012, 171, 757-765.	1.3	23

#	Article	IF	CITATIONS
91	Clinical efficacy and mechanistic evaluation of aflibercept for proliferative diabetic retinopathy (acronym CLARITY): a multicentre phase IIb randomised active-controlled clinical trial. BMJ Open, 2015, 5, e008405.	0.8	23
92	Pathological Angiogenesis Requires Syndecan-4 for Efficient VEGFA-Induced VE-Cadherin Internalization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1374-1389.	1.1	20
93	Dimethylarginine dimethylaminohydrolase-2 deficiency promotes vascular regeneration and attenuates pathological angiogenesis. Experimental Eye Research, 2016, 147, 148-155.	1.2	19
94	The Epidemiology of Stargardt Disease in the United Kingdom. Ophthalmology Retina, 2017, 1, 508-513.	1.2	19
95	In situ regeneration of retinal pigment epithelium by gene transfer of E2F2: a potential strategy for treatment of macular degenerations. Gene Therapy, 2017, 24, 810-818.	2.3	19
96	A Cross-Sectional and Longitudinal Study of Retinal Sensitivity in <i>RPE65</i> -Associated Leber Congenital Amaurosis. , 2018, 59, 3330.		19
97	The integrity and organization of the human AIPL1 functional domains is critical for its role as a HSP90-dependent co-chaperone for rod PDE6. Human Molecular Genetics, 2017, 26, 4465-4480.	1.4	18
98	Validation of a Vision-Guided Mobility Assessment for <i>RPE65</i> -Associated Retinal Dystrophy. Translational Vision Science and Technology, 2020, 9, 5.	1.1	18
99	Gene Transfer of An Engineered Zinc Finger Protein Enhances the Anti-angiogenic Defense System. Molecular Therapy, 2007, 15, 1917-1923.	3.7	17
100	RNAiâ€mediated suppression of vimentin or glial fibrillary acidic protein prevents the establishment of Müller glial cell hypertrophy in progressive retinal degeneration. Glia, 2021, 69, 2272-2290.	2.5	17
101	Cd59a deficiency in mice leads to preferential innate immune activation in the retinal pigment epithelium–choroid with age. Neurobiology of Aging, 2015, 36, 2637-2648.	1.5	16
102	Early-Onset Progressive Degeneration of the Area Centralis in RPE65-Deficient Dogs. , 2017, 58, 3268.		16
103	Accelerated oxygen-induced retinopathy is a reliable model of ischemia-induced retinal neovascularization. PLoS ONE, 2017, 12, e0179759.	1.1	16
104	An immune response after intraocular administration of an adenoviral vector containing a beta galactosidase reporter gene slows retinal degeneration in the rd mouse. British Journal of Ophthalmology, 2001, 85, 341-344.	2.1	15
105	Absence of ocular malignant transformation after sub-retinal delivery of rAAV2/2 or integrating lentiviral vectors in p53-deficient mice. Gene Therapy, 2012, 19, 182-188.	2.3	15
106	Nature of the Visual Loss in Observers With Leber's Congenital Amaurosis Caused by Specific Mutations in RPE65. Investigative Ophthalmology and Visual Science, 2014, 55, 6817-6828.	3.3	15
107	Severe Loss of Tritan Color Discrimination in <i>RPE65</i> Associated Leber Congenital Amaurosis. , 2018, 59, 85.		15
108	Stabilization of myeloid-derived HIFs promotes vascular regeneration in retinal ischemia. Angiogenesis, 2020, 23, 83-90.	3.7	15

JAMES W B BAINBRIDGE

#	Article	IF	CITATIONS
109	Dark-Adaptation Functions in Molecularly Confirmed Achromatopsia and the Implications for Assessment in Retinal Therapy Trials. , 2014, 55, 6340.		14
110	Spectral sensitivity measurements reveal partial success in restoring missing rod function with gene therapy. Journal of Vision, 2015, 15, 20.	0.1	14
111	Clinical and functional analyses of AIPL1 variants reveal mechanisms of pathogenicity linked to different forms of retinal degeneration. Scientific Reports, 2020, 10, 17520.	1.6	14
112	Improvement of neuronal visual responses in the superior colliculus in Prph2Rd2/Rd2 mice following gene therapy. Molecular and Cellular Neurosciences, 2004, 25, 103-110.	1.0	13
113	PIMS (Positioning In Macular hole Surgery) trial – a multicentre interventional comparative randomised controlled clinical trial comparing face-down positioning, with an inactive face-forward position on the outcome of surgery for large macular holes: study protocol for a randomised controlled trial. Trials. 2015. 16. 527.	0.7	13
114	Quantifying Retinal Area in Ultra-Widefield Imaging Using a 3-Dimensional Printed EyeÂModel. Ophthalmology Retina, 2018, 2, 65-71.	1.2	13
115	Antioxidant and lipid supplementation improve the development of photoreceptor outer segments in pluripotent stem cell-derived retinal organoids. Stem Cell Reports, 2022, 17, 775-788.	2.3	13
116	Late neuroprogenitors contribute to normal retinal vascular development in a <i>Hif2a</i> -dependent manner. Development (Cambridge), 2018, 145, .	1.2	12
117	Ocular gene therapy trials due to report this year; Keeping an eye on clinical trials in 2008. Gene Therapy, 2008, 15, 633-634.	2.3	11
118	Investigation of Aberrant Splicing Induced by <i>AIPL1</i> Variations as a Cause of Leber Congenital Amaurosis. , 2015, 56, 7784.		11
119	Gene Augmentation Trials Using the Rpe65-Deficient Dog: Contributions Towards Development and Refinement of Human Clinical Trials. Advances in Experimental Medicine and Biology, 2012, 723, 177-182.	0.8	10
120	Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye. Scientific Reports, 2017, 7, 40830.	1.6	10
121	Nature of subretinal fluid in patients undergoing vitrectomy for macular hole: a cytopathological and optical coherence tomography study. Clinical and Experimental Ophthalmology, 2008, 36, 812-816.	1.3	9
122	Airbag injury and bilateral globe rupture. American Journal of Emergency Medicine, 2010, 28, 982.e5-982.e6.	0.7	9
123	Depot Indocyanine green dye for <i>in vivo</i> visualization of infiltrating leukocytes. DMM Disease Models and Mechanisms, 2015, 8, 1479-87.	1.2	9
124	Intravitreal aflibercept compared with panretinal photocoagulation for proliferative diabetic retinopathy: the CLARITY non-inferiority RCT. Efficacy and Mechanism Evaluation, 2018, 5, 1-112.	0.9	9
125	Stickler Syndrome. Ophthalmology, 2008, 115, 1636-1637.	2.5	6
126	Positioning In Macular hole Surgery (PIMS): statistical analysis plan for a randomised controlled trial. Trials, 2017, 18, 274.	0.7	6

JAMES W B BAINBRIDGE

#	Article	IF	CITATIONS
127	Gene therapy clinical trials for inherited eye disease. Expert Review of Ophthalmology, 2007, 2, 517-519.	0.3	5
128	Surgery for idiopathic epiretinal membrane. The Cochrane Library, 2021, 2021, CD013297.	1.5	5
129	Contemporary Outcomes and Prognostic Factors of 23-Gauge Vitrectomy for Retained Lens Fragments After Phacoemulsification. American Journal of Ophthalmology, 2020, 219, 271-283.	1.7	4
130	Gene therapy for inherited childhood blindness shows promise. Expert Review of Ophthalmology, 2008, 3, 357-359.	0.3	3
131	Retinal Oximetry Differences Between Optic Disc Collateral Vessels and New Vessels. JAMA Ophthalmology, 2017, 135, 1003.	1.4	3
132	Gene therapy for Leber congenital amaurosis. Expert Review of Ophthalmology, 2018, 13, 11-15.	0.3	3
133	The Relationship Between Retinal Vessel Oxygenation and Spatial Distribution of Retinal Nonperfusion in Retinal Vascular Diseases. , 2019, 60, 2083.		3
134	The macrophage is key to choroidal neovascularization in age-related macular degeneration. Expert Review of Ophthalmology, 2007, 2, 981-986.	0.3	2
135	Surgery for idiopathic epiretinal membrane. The Cochrane Library, 2019, , .	1.5	2
136	Nystagmus and optical coherence tomography findings in CNGB3-associated achromatopsia. Journal of AAPOS, 2020, 24, 82.e1-82.e7.	0.2	2
137	A Comprehensive Study of the Retinal Phenotype of Rpe65-Deficient Dogs. Cells, 2021, 10, 115.	1.8	2
138	Intravitreal administration of recombinant human opticin protects against hyperoxia-induced pre-retinal neovascularization. Experimental Eye Research, 2022, 215, 108908.	1.2	2
139	Early vitrectomy for exogenous endophthalmitis following surgery. The Cochrane Library, 0, , .	1.5	1
140	Intravitreal Pharmacokinetic Study of the Antiangiogenic Glycoprotein Opticin. Molecular Pharmaceutics, 2020, 17, 2390-2397.	2.3	1
141	The Role of Neuroglobin in Retinal Hemodynamics and Metabolism: A Real-Time Study. Translational Vision Science and Technology, 2022, 11, 2.	1.1	1
142	Retinal cell transplantation: prospects for the future. Expert Review of Ophthalmology, 2012, 7, 99-101.	0.3	0
143	Reply to comment on "Ccl2, Cx3cr1 and Ccl2/Cx3cr1 chemokine deficiencies are not sufficient to cause age-related retinal degeneration―by Luhmann etÂal. (Exp. Eye Res. 107, February 2013, 80–87). Experimental Eye Research, 2013, 111, 136.	1.2	0
144	Detinal Surgical Techniques for Cone Therapy, 2021, 280,205		0

144 Retinal Surgical Techniques for Gene Therapy. , 2021, , 389-395.

#	Article	IF	CITATIONS
145	Anti-Angiogenic Gene Therapy: Basic Science and Challenges for Translation into the Clinic. Essentials in Ophthalmology, 2016, , 173-188.	0.0	0