
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812201/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2<br>diabetes susceptibility. Nature Genetics, 2014, 46, 234-244.                                                          | 21.4 | 959       |
| 2  | The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.                                                                                                                                                     | 27.8 | 952       |
| 3  | An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66, 2888-2902.                                                                                                                  | 0.6  | 615       |
| 4  | A map of open chromatin in human pancreatic islets. Nature Genetics, 2010, 42, 255-259.                                                                                                                                    | 21.4 | 515       |
| 5  | Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nature<br>Genetics, 2014, 46, 136-143.                                                                                            | 21.4 | 475       |
| 6  | Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nature Genetics, 2017, 49, 17-26.                                                     | 21.4 | 452       |
| 7  | Genome-wide associations for birth weight and correlations with adult disease. Nature, 2016, 538, 248-252.                                                                                                                 | 27.8 | 406       |
| 8  | Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nature Genetics, 2019, 51, 804-814.                                                                               | 21.4 | 402       |
| 9  | Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Medicine, 2018, 15, e1002654.                                                 | 8.4  | 373       |
| 10 | Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.                                                                        | 21.4 | 365       |
| 11 | An atlas of dynamic chromatin landscapes in mouse fetal development. Nature, 2020, 583, 744-751.                                                                                                                           | 27.8 | 257       |
| 12 | Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.                                                             | 21.4 | 250       |
| 13 | A single-cell atlas of chromatin accessibility in the human genome. Cell, 2021, 184, 5985-6001.e19.                                                                                                                        | 28.9 | 194       |
| 14 | Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL<br>Cholesterol. American Journal of Human Genetics, 2014, 94, 233-245.                                                        | 6.2  | 193       |
| 15 | Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association<br>Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors. PLoS Genetics, 2015, 11,<br>e1005694. | 3.5  | 178       |
| 16 | The miRNA Profile of Human Pancreatic Islets and Beta-Cells and Relationship to Type 2 Diabetes Pathogenesis. PLoS ONE, 2013, 8, e55272.                                                                                   | 2.5  | 178       |
| 17 | Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature, 2021, 594, 398-402.                                                                                                                   | 27.8 | 170       |
| 18 | Choice of transcripts and software has a large effect on variant annotation. Genome Medicine, 2014,<br>6, 26.                                                                                                              | 8.2  | 158       |

2

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nature Communications, 2017, 8, 16015.                                    | 12.8 | 149       |
| 20 | Single-cell multiomic profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes. ELife, 2020, 9, .                                                    | 6.0  | 129       |
| 21 | The Power of Gene-Based Rare Variant Methods to Detect Disease-Associated Variation and Test<br>Hypotheses About Complex Disease. PLoS Genetics, 2015, 11, e1005165.                            | 3.5  | 124       |
| 22 | Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nature Communications, 2019, 10, 29.                           | 12.8 | 113       |
| 23 | Comprehensive Association Study of Type 2 Diabetes and Related Quantitative Traits With 222<br>Candidate Genes. Diabetes, 2008, 57, 3136-3144.                                                  | 0.6  | 104       |
| 24 | Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. ELife, 2018, 7, .                                                      | 6.0  | 103       |
| 25 | Single-cell chromatin accessibility identifies pancreatic islet cell type– and state-specific regulatory programs of diabetes risk. Nature Genetics, 2021, 53, 455-466.                         | 21.4 | 100       |
| 26 | Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus. PLoS Genetics, 2015, 11, e1004876. | 3.5  | 95        |
| 27 | An atlas of gene regulatory elements in adult mouse cerebrum. Nature, 2021, 598, 129-136.                                                                                                       | 27.8 | 95        |
| 28 | Systematic analysis of binding of transcription factors to noncoding variants. Nature, 2021, 591, 147-151.                                                                                      | 27.8 | 89        |
| 29 | Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations. PLoS Genetics, 2017, 13, e1006728.                        | 3.5  | 88        |
| 30 | Pancreatic islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk. Nature Communications, 2019, 10, 2078.                                      | 12.8 | 82        |
| 31 | Identification of a Regulatory Variant That Binds FOXA1 and FOXA2 at the CDC123/CAMK1D Type 2 Diabetes GWAS Locus. PLoS Genetics, 2014, 10, e1004633.                                           | 3.5  | 80        |
| 32 | A computational system to select candidate genes for complex human traits. Bioinformatics, 2007, 23, 1132-1140.                                                                                 | 4.1  | 79        |
| 33 | Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation.<br>PLoS Genetics, 2015, 11, e1005230.                                                     | 3.5  | 77        |
| 34 | Characterizing cis-regulatory elements using single-cell epigenomics. Nature Reviews Genetics, 2023, 24, 21-43.                                                                                 | 16.3 | 72        |
| 35 | Trans-ethnic Fine Mapping Highlights Kidney-Function Genes Linked to Salt Sensitivity. American<br>Journal of Human Genetics, 2016, 99, 636-646.                                                | 6.2  | 67        |
| 36 | Common DNA sequence variation influences 3-dimensional conformation of the human genome.<br>Genome Biology, 2019, 20, 255.                                                                      | 8.8  | 65        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Cardiac cell type–specific gene regulatory programs and disease risk association. Science Advances, 2021, 7, .                                                                                                            | 10.3 | 63        |
| 38 | Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice.<br>American Journal of Human Genetics, 2017, 100, 238-256.                                                                | 6.2  | 60        |
| 39 | Lipid-Induced Epigenomic Changes in Human Macrophages Identify a Coronary Artery<br>Disease-Associated Variant that Regulates PPAP2B Expression through Altered C/EBP-Beta Binding. PLoS<br>Genetics, 2015, 11, e1005061. | 3.5  | 56        |
| 40 | Trans-ethnic Meta-analysis and Functional Annotation Illuminates theÂGenetic Architecture of Fasting<br>Glucose and Insulin. American Journal of Human Genetics, 2016, 99, 56-75.                                         | 6.2  | 55        |
| 41 | Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with High-Density<br>Lipoprotein Cholesterol. American Journal of Human Genetics, 2015, 97, 801-815.                                             | 6.2  | 49        |
| 42 | A Low-Frequency Inactivating <i>AKT2</i> Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes, 2017, 66, 2019-2032.                                    | 0.6  | 47        |
| 43 | Shared genetic risk contributes to type 1 and type 2 diabetes etiology. Human Molecular Genetics, 2018, , .                                                                                                               | 2.9  | 45        |
| 44 | The South Asian Genome. PLoS ONE, 2014, 9, e102645.                                                                                                                                                                       | 2.5  | 43        |
| 45 | Mechanisms of Type 2 Diabetes Risk Loci. Current Diabetes Reports, 2017, 17, 72.                                                                                                                                          | 4.2  | 39        |
| 46 | Allele-specific NKX2-5 binding underlies multiple genetic associations with human electrocardiographic traits. Nature Genetics, 2019, 51, 1506-1517.                                                                      | 21.4 | 35        |
| 47 | Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data. Genome Medicine, 2019, 11, 19.                                                                    | 8.2  | 33        |
| 48 | Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.                                                                                                | 5.3  | 31        |
| 49 | Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction by FOXA pioneer factors. Nature Communications, 2021, 12, 6636.                                                                   | 12.8 | 31        |
| 50 | Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 379-384.               | 7.1  | 28        |
| 51 | Simulation of Finnish Population History, Guided by Empirical Genetic Data, to Assess Power of<br>Rare-Variant Tests in Finland. American Journal of Human Genetics, 2014, 94, 710-720.                                   | 6.2  | 24        |
| 52 | Mutations and variants of ONECUT1 in diabetes. Nature Medicine, 2021, 27, 1928-1940.                                                                                                                                      | 30.7 | 24        |
| 53 | Pancreatic progenitor epigenome maps prioritize type 2 diabetes risk genes with roles in development.<br>ELife, 2021, 10, .                                                                                               | 6.0  | 15        |
| 54 | Glucocorticoid signaling in pancreatic islets modulates gene regulatory programs and genetic risk of type 2 diabetes. PLoS Genetics, 2021, 17, e1009531.                                                                  | 3.5  | 13        |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Whole-genome sequencing to understand the genetic architecture of common gene expression and biomarker phenotypes. Human Molecular Genetics, 2015, 24, 1504-1512. | 2.9 | 8         |
| 56 | Neighborhoods to Nucleotides—Advances and Gaps for an Obesity Disparities Systems Epidemiology<br>Model. Current Epidemiology Reports, 2019, 6, 476-485.          | 2.4 | 1         |
| 57 | Whole Genome and Exome Sequencing of Type 2 Diabetes. Frontiers in Diabetes, 2014, , 29-41.                                                                       | 0.4 | Ο         |