
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812184/publications.pdf Version: 2024-02-01

DARIO DEL DINO

#	Article	IF	CITATIONS
1	Sonosensitive capsules for brain thrombolysis increase ischemic damage in a stroke model. Journal of Nanobiotechnology, 2022, 20, 46.	4.2	8
2	High-yield halide-assisted synthesis of metal–organic framework UiO-based nanocarriers. Nanoscale, 2022, 14, 6789-6801.	2.8	4
3	REAP: revealing drug tolerant persister cells in cancer using contrast enhanced optical coherence and photoacoustic tomography. JPhys Photonics, 2021, 3, 021001.	2.2	1
4	Monodisperse superparamagnetic nanoparticles separation adsorbents for high-yield removal of arsenic and/or mercury metals in aqueous media. Journal of Molecular Liquids, 2021, 335, 116485.	2.3	7
5	Plasmonic-Assisted Thermocyclizations in Living Cells Using Metal–Organic Framework Based Nanoreactors. ACS Nano, 2021, 15, 16924-16933.	7.3	20
6	Nanoparticle behavior and stability in biological environments. , 2020, , 5-18.		7
7	[¹⁸ F]-FMISO PET/MRI Imaging Shows Ischemic Tissue around Hematoma in Intracerebral Hemorrhage. Molecular Pharmaceutics, 2020, 17, 4667-4675.	2.3	4
8	808Ânm-activable core@multishell upconverting nanoparticles with enhanced stability for efficient photodynamic therapy. Journal of Nanobiotechnology, 2020, 18, 85.	4.2	22
9	Core-Shell Palladium/MOF Platforms as Diffusion-Controlled Nanoreactors in Living Cells and Tissue Models. Cell Reports Physical Science, 2020, 1, 100076.	2.8	35
10	Synthesis, Characterization, and Evaluation of Superparamagnetic Doped Ferrites as Potential Therapeutic Nanotools. Chemistry of Materials, 2020, 32, 2220-2231.	3.2	50
11	Plasmonic Cellâ€Derived Nanocomposites for Lightâ€Controlled Cargo Release inside Living Cells. Advanced Biology, 2020, 4, e1900260.	3.0	11
12	In vivo ultrasound-activated delivery of recombinant tissue plasminogen activator from the cavity of sub-micrometric capsules. Journal of Controlled Release, 2019, 308, 162-171.	4.8	21
13	Combination of light-driven co-delivery of chemodrugs and plasmonic-induced heat for cancer therapeutics using hybrid protein nanocapsules. Journal of Nanobiotechnology, 2019, 17, 106.	4.2	19
14	Photothermal effects on protein adsorption dynamics of PEGylated gold nanorods. Applied Materials Today, 2019, 15, 599-604.	2.3	23
15	Aqueous stable luminescent perovskite-polymer composites. Applied Materials Today, 2019, 15, 562-569.	2.3	13
16	Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€Triggered Release of Active Cargo Inside Living Cells. Angewandte Chemie - International Edition, 2019, 58, 7078-7082.	7.2	103
17	Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€īriggered Release of Active Cargo Inside Living Cells. Angewandte Chemie, 2019, 131, 7152-7156.	1.6	15
18	Identification and characterization of Cardiac Glycosides as senolytic compounds. Nature Communications, 2019, 10, 4731.	5.8	230

PABLO DEL PINO

#	Article	IF	CITATIONS
19	Nanoparticles engineered to bind cellular motors for efficient delivery. Journal of Nanobiotechnology, 2018, 16, 33.	4.2	14
20	Laterally and Temporally Controlled Intracellular Staining by Lightâ€Triggered Release of Encapsulated Fluorescent Markers. Chemistry - A European Journal, 2018, 24, 2098-2102.	1.7	35
21	Colloidal bioplasmonics. Nano Today, 2018, 20, 58-73.	6.2	25
22	Aqueous Synthesis of Copper(II)-Imidazolate Nanoparticles. Inorganic Chemistry, 2018, 57, 12056-12065.	1.9	6
23	Antireflection self-reference method based on ultrathin metallic nanofilms for improving terahertz reflection spectroscopy. Optics Express, 2018, 26, 19470.	1.7	7
24	Magnetic Nanoparticles for Cancer Therapy and Bioimaging. Nanomedicine and Nanotoxicology, 2018, , 239-279.	0.1	9
25	Novel fluorinated ligands for gold nanoparticle labelling with applications in ¹⁹ F-MRI. Chemical Communications, 2017, 53, 2447-2450.	2.2	18
26	Advances toward More Efficient Targeted Delivery of Nanoparticles <i>in Vivo</i> : Understanding Interactions between Nanoparticles and Cells. ACS Nano, 2017, 11, 2397-2402.	7.3	98
27	Enhanced Terahertz Radiation Generation of Photoconductive Antennas Based on Manganese Ferrite Nanoparticles. Scientific Reports, 2017, 7, 46261.	1.6	9
28	Real-time, label-free monitoring of cell viability based on cell adhesion measurements with an atomic force microscope. Journal of Nanobiotechnology, 2017, 15, 23.	4.2	17
29	Optimizing conditions for labeling of mesenchymal stromal cells (MSCs) with gold nanoparticles: a prerequisite for in vivo tracking of MSCs. Journal of Nanobiotechnology, 2017, 15, 24.	4.2	31
30	Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal Nanoparticles. Chemistry of Materials, 2017, 29, 399-461.	3.2	233
31	Colloidal Stability and Surface Chemistry Are Key Factors for the Composition of the Protein Corona of Inorganic Gold Nanoparticles. Advanced Functional Materials, 2017, 27, 1701956.	7.8	76
32	Enhanced All-Optical Modulation of Terahertz Waves on the Basis of Manganese Ferrite Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 21634-21640.	1.5	17
33	In situ detection of the protein corona in complex environments. Nature Communications, 2017, 8, 1542.	5.8	117
34	Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. ELife, 2017, 6, .	2.8	115
35	Multiparametric analysis of anti-proliferative and apoptotic effects of gold nanoprisms on mouse and human primary and transformed cells, biodistribution and toxicity in vivo. Particle and Fibre Toxicology, 2017, 14, 41.	2.8	17
36	Synthesis and Surface Engineering of Gold Nanoparticles, and Their Potential Applications in Bionanotechnology. , 2017, , .		0

#	Article	IF	CITATIONS
37	Nanoparticle dosage—a nontrivial task of utmost importance for quantitative nanosafety research. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 479-492.	3.3	22
38	Basic Physicochemical Properties of Polyethylene Glycol Coated Gold Nanoparticles that Determine Their Interaction with Cells. Angewandte Chemie - International Edition, 2016, 55, 5483-5487.	7.2	115
39	Basic Physicochemical Properties of Polyethylene Glycol Coated Gold Nanoparticles that Determine Their Interaction with Cells. Angewandte Chemie, 2016, 128, 5573-5577.	1.6	11
40	Highly active antibody-modified magnetic polyelectrolyte capsules. Journal of Colloid and Interface Science, 2016, 474, 1-8.	5.0	22
41	In vivo degeneration and the fate of inorganic nanoparticles. Chemical Society Reviews, 2016, 45, 2440-2457.	18.7	355
42	Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots. Nanotechnology, 2016, 27, 055101.	1.3	15
43	Dissociation coefficients of protein adsorption to nanoparticles as quantitative metrics for description of the protein corona: A comparison of experimental techniques and methodological relevance. International Journal of Biochemistry and Cell Biology, 2016, 75, 148-161.	1.2	46
44	Gold-Based Nanomaterials for Applications in Nanomedicine. Topics in Current Chemistry, 2016, 370, 169-202.	4.0	56
45	Photoâ€electrochemical Bioanalysis of Guanosine Monophosphate Using Coupled Enzymatic Reactions at a CdS/ZnS Quantum Dot Electrode. Small, 2015, 11, 5844-5850.	5.2	33
46	Conjugation of Polymer-Coated Gold Nanoparticles with Antibodies—Synthesis and Characterization. Nanomaterials, 2015, 5, 1297-1316.	1.9	29
47	Phase Transfer and Polymer Coating Methods toward Improving the Stability of Metallic Nanoparticles for Biological Applications. Chemistry of Materials, 2015, 27, 990-997.	3.2	116
48	Encapsulated enzymes with integrated fluorescence-control of enzymatic activity. Journal of Materials Chemistry B, 2015, 3, 2801-2807.	2.9	21
49	Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano, 2015, 9, 6996-7008.	7.3	717
50	Model Driven Optimization of Magnetic Anisotropy of Exchange-Coupled Core–Shell Ferrite Nanoparticles for Maximal Hysteretic Loss. Chemistry of Materials, 2015, 27, 7380-7387.	3.2	93
51	Nanomedicine delivery: does protein corona route to the target or off road?. Nanomedicine, 2015, 10, 3231-3247.	1.7	86
52	Investigating the role of shape on the biological impact of gold nanoparticles <i>in vitro</i> . Nanomedicine, 2015, 10, 2643-2657.	1.7	33
53	Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles. Journal of Inorganic Biochemistry, 2015, 153, 334-338.	1.5	60
54	High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles. ACS Nano, 2015, 9, 10431-10444.	7.3	70

#	Article	IF	CITATIONS
55	Particle-Based Optical Sensing of Intracellular Ions at the Example of Calcium - What Are the Experimental Pitfalls?. Small, 2015, 11, 896-904.	5.2	27
56	Dissecting the Molecular Mechanism of Apoptosis during Photothermal Therapy Using Gold Nanoprisms. ACS Nano, 2015, 9, 52-61.	7.3	336
57	Future Perspectives Towards the Use of Nanomaterials for Smart Food Packaging and Quality Control. Particle and Particle Systems Characterization, 2015, 32, 408-416.	1.2	33
58	In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?. Beilstein Journal of Nanotechnology, 2014, 5, 1477-1490.	1.5	130
59	A promising road with challenges: where are gold nanoparticles in translational research?. Nanomedicine, 2014, 9, 2353-2370.	1.7	58
60	Special Section Guest Editorial: Biomimetic and Bioinspired Materials for Applications in Biophotonics. Journal of Biomedical Optics, 2014, 19, 101501.	1.4	0
61	Fluorescence-based ion-sensing with colloidal particles. Current Opinion in Pharmacology, 2014, 18, 98-103.	1.7	8
62	Tailoring the interplay between electromagnetic fields and nanomaterials toward applications in life sciences: a review. Journal of Biomedical Optics, 2014, 19, 101507.	1.4	15
63	Protein corona formation around nanoparticles – from the past to the future. Materials Horizons, 2014, 1, 301-313.	6.4	464
64	Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnology Advances, 2014, 32, 679-692.	6.0	62
65	Metal ions in the context of nanoparticles toward biological applications. Current Opinion in Chemical Engineering, 2014, 4, 88-96.	3.8	28
66	Gold nanoprisms for photothermal cell ablation <i>in vivo</i> . Nanomedicine, 2014, 9, 1913-1922.	1.7	33
67	Strategies for the Biofunctionalization of Gold and Iron Oxide Nanoparticles. Langmuir, 2014, 30, 15057-15071.	1.6	70
68	The Challenge To Relate the Physicochemical Properties of Colloidal Nanoparticles to Their Cytotoxicity. Accounts of Chemical Research, 2013, 46, 743-749.	7.6	330
69	Design and Characterization of Functional Nanoparticles for Enhanced Bio-performance. Methods in Molecular Biology, 2013, 1051, 165-207.	0.4	1
70	DNA as a Molecular Local Thermal Probe for the Analysis of Magnetic Hyperthermia. Angewandte Chemie - International Edition, 2013, 52, 11526-11529.	7.2	89
71	Nanoprisms: Gold Nanoprisms as Optoacoustic Signal Nanoamplifiers for In Vivo Bioimaging of Gastrointestinal Cancers (Small 1/2013). Small, 2013, 9, 67-67.	5.2	2
72	Plasmonic-driven thermal sensing: ultralow detection of cancer markers. Chemical Communications, 2013, 49, 3676.	2.2	44

#	Article	IF	CITATIONS
73	Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles. Pharmaceuticals, 2013, 6, 204-222.	1.7	16
74	Interfacing Engineered Nanoparticles with Biological Systems: Anticipating Adverse Nano–Bio Interactions. Small, 2013, 9, 1573-1584.	5.2	176
75	Gold Nanoprisms as Optoacoustic Signal Nanoamplifiers for In Vivo Bioimaging of Gastrointestinal Cancers. Small, 2013, 9, 68-74.	5.2	121
76	Tailoring the Synthesis and Heating Ability of Gold Nanoprisms for Bioapplications. Langmuir, 2012, 28, 8965-8970.	1.6	167
77	Hyperthermia Using Inorganic Nanoparticles. Frontiers of Nanoscience, 2012, , 309-335.	0.3	5
78	Synthesis Applications of Gold Nanoparticles. Frontiers of Nanoscience, 2012, , 3-33.	0.3	7
79	Working Together: The Combined Application of a Magnetic Field and Penetratin for the Delivery of Magnetic Nanoparticles to Cells in 3D. ACS Nano, 2011, 5, 7910-7919.	7.3	63
80	Influence of both a static magnetic field and penetratin on magnetic nanoparticle delivery into fibroblasts. Nanomedicine, 2011, 6, 1719-1731.	1.7	24
81	Taking Advantage of Unspecific Interactions to Produce Highly Active Magnetic Nanoparticleâ~`Antibody Conjugates. ACS Nano, 2011, 5, 4521-4528.	7.3	133
82	Gene Silencing Mediated by Magnetic Lipospheres Tagged with Small Interfering RNA. Nano Letters, 2010, 10, 3914-3921.	4.5	66
83	On the mechanical stability of polymeric microcontainers functionalized with nanoparticles. Soft Matter, 2009, 5, 148-155.	1.2	122
84	Nanoparticle-modified polyelectrolyte capsules. Nano Today, 2008, 3, 12-21.	6.2	93
85	Uptake of Colloidal Polyelectrolyteâ€Coated Particles and Polyelectrolyte Multilayer Capsules by Living Cells. Advanced Materials, 2008, 20, 4281-4287.	11.1	170
86	Photoactivated Release of Cargo from the Cavity of Polyelectrolyte Capsules to the Cytosol of Cells. Langmuir, 2008, 24, 12517-12520.	1.6	137
87	The configuration of the Cu2+ binding region in full-length human prion protein compared with the isolated octapeptide. Veterinary Microbiology, 2007, 123, 358-366.	0.8	15
88	The configuration of the Cu2+ binding region in full-length human prion protein. European Biophysics Journal, 2007, 36, 239-252.	1.2	27
89	A new method to determine the structure of the metal environment in metalloproteins: investigation of the prion protein octapeptide repeat Cu2+ complex. European Biophysics Journal, 2005, 34, 97-112.	1.2	31

90 Nanoparticle-Based Delivery and Biosensing Systems: An Example. , 0, , 247-274.

0