Eric Doris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812149/publications.pdf

Version: 2024-02-01

33	133252
37	59
h-index	g-index
190	6352
109	0332
times ranked	citing authors
3	37 h-index 189

#	Article	IF	Citations
1	A Versatile Strategy for Quantum Dot Ligand Exchange. Journal of the American Chemical Society, 2007, 129, 482-483.	13.7	296
2	Catalytic Oxidation of Silanes by Carbon Nanotube–Gold Nanohybrids. Angewandte Chemie - International Edition, 2011, 50, 7533-7536.	13.8	169
3	Oxidative biodegradation of single- and multi-walled carbon nanotubes. Nanoscale, 2011, 3, 893-896.	5.6	162
4	Supramolecular Self-Assembly of Amphiphiles on Carbon Nanotubes: A Versatile Strategy for the Construction of CNT/Metal Nanohybrids, Application to Electrocatalysis. Journal of the American Chemical Society, 2008, 130, 8110-8111.	13.7	141
5	Separation of Semiconducting from Metallic Carbon Nanotubes by Selective Functionalization with Azomethine Ylides. Journal of the American Chemical Society, 2006, 128, 6552-6553.	13.7	126
6	SiRNA delivery with functionalized carbon nanotubes. International Journal of Pharmaceutics, 2011, 416, 419-425.	5 . 2	117
7	Is cultural change associated with eating disorders? A systematic review of the literature. Eating and Weight Disorders, 2015, 20, 149-160.	2.5	104
8	Cooperative Dehydrogenation of Nâ€Heterocycles Using a Carbon Nanotube–Rhodium Nanohybrid. Chemistry - A European Journal, 2015, 21, 7039-7042.	3.3	89
9	Functionalization of Single-Wall Carbon Nanotubes by Tandem High-Pressure/Cr(CO)6Activation of Dielsâ^'Alder Cycloaddition. Journal of the American Chemical Society, 2006, 128, 14764-14765.	13.7	86
10	Drug Delivery and Imaging with Polydiacetylene Micelles. Chemistry - A European Journal, 2012, 18, 400-408.	3.3	80
11	The chemistry of pentavalent organobismuth reagents. Part 14. Recent advances in the copper-catalyzed phenylation of amines. Tetrahedron, 1997, 53, 4137-4144.	1.9	73
12	Tumorâ€Targeted Polydiacetylene Micelles for In Vivo Imaging and Drug Delivery. Small, 2011, 7, 2786-2792.	10.0	68
13	Carbon nanotube–gold nanohybrids for selective catalytic oxidation of alcohols. Nanoscale, 2013, 5, 6491.	5.6	68
14	Cp2TiCl-Mediated Selective Reduction of \hat{l}_{\pm} , \hat{l}_{\pm}^2 -Epoxy Ketones. Journal of Organic Chemistry, 2001, 66, 1046-1048.	3.2	64
15	Room temperature Suzuki coupling of aryl iodides, bromides, and chlorides using a heterogeneous carbon nanotube-palladium nanohybrid catalyst. Catalysis Science and Technology, 2015, 5, 2388-2392.	4.1	62
16	Highly Chemoselective Hydrogenolysis of Iodoarenes. Journal of Organic Chemistry, 2002, 67, 932-934.	3.2	61
17	Selective conversion of nitroarenes using a carbon nanotube–ruthenium nanohybrid. Chemical Communications, 2015, 51, 1739-1742.	4.1	61
18	Recent developments in Tsuji-Wacker oxidation. Tetrahedron Letters, 2016, 57, 3993-4000.	1.4	60

#	Article	IF	Citations
19	Polyethylenimine–carbon nanotube nanohybrids for siRNA-mediated gene silencing at cellular level. Nanoscale, 2011, 3, 1461.	5.6	56
20	Cognitive Remediation and Emotion Skills Training (CREST) for anorexia nervosa in individual format: self-reported outcomes. BMC Psychiatry, 2015, 15, 53.	2.6	56
21	Proteins of the Innate Immune System Crystallize on Carbon Nanotubes but Are Not Activated. ACS Nano, 2011, 5, 730-737.	14.6	55
22	Recent Advances in the Chemistry of Carbenoids Derived from Epoxides. Synlett, 1998, 1998, 337-343.	1.8	53
23	Advances in carbon nanotube-noble metal catalyzed organic transformations. Nanotechnology Reviews, 2012, 1, 515-539.	5.8	49
24	Carbon Nanotube–Gold Nanohybrid Catalyzed Nâ€Formylation of Amines by using Aqueous Formaldehyde. ChemCatChem, 2014, 6, 2201-2205.	3.7	48
25	Reaction of cyclic .alphahydroxy epoxides with a strong base: a new 1,2-rearrangement, evidence for a carbenoid pathway Journal of the American Chemical Society, 1995, 117, 12700-12704.	13.7	47
26	Enantioselective synthesis of chromenes. Tetrahedron Letters, 2003, 44, 435-437.	1.4	47
27	Co-catalytic oxidative coupling of primary amines to imines using an organic nanotube–gold nanohybrid. Chemical Communications, 2014, 50, 15251-15254.	4.1	47
28	Formal Synthesis of (+)-Catharanthine. Angewandte Chemie - International Edition, 2006, 45, 5334-5336.	13.8	46
29	A versatile strategy for the functionalization of boron nitride nanotubes. Journal of Materials Chemistry, 2009, 19, 1271.	6.7	45
30	CO ₂ Reduction to CO in Water: Carbon Nanotube–Gold Nanohybrid as a Selective and Efficient Electrocatalyst. ChemSusChem, 2016, 9, 2317-2320.	6.8	45
31	Controlled Release of a Micelle Payload via Sequential Enzymatic and Bioorthogonal Reactions in Living Systems. Angewandte Chemie - International Edition, 2019, 58, 6366-6370.	13.8	45
32	Fullerene-functionalized carbon nanotubes as improved optical limiting devices. Carbon, 2011, 49, 3998-4003.	10.3	43
33	Aerobic Oxidation of Phenols and Related Compounds using Carbon Nanotube–Gold Nanohybrid Catalysts. ChemCatChem, 2014, 6, 719-723.	3.7	43
34	Combination of carbon nanotubes and two-photon absorbers for broadband optical limiting. Chemical Physics Letters, 2004, 391, 124-128.	2.6	42
35	Cp2TiCl-mediated selective reduction of $\hat{l}_{\pm},\hat{l}_{-}^2$ -unsaturated ketones. Tetrahedron Letters, 2002, 43, 2013-2015.	1.4	40
36	Direct Reductive Amination of Aldehydes Catalyzed by Carbon Nanotube/Gold Nanohybrids. ChemCatChem, 2013, 5, 3571-3575.	3.7	40

#	Article	IF	CITATIONS
37	Size effect of gold nanoparticles supported on carbon nanotube as catalysts in selected organic reactions. Tetrahedron, 2014, 70, 6140-6145.	1.9	39
38	Stable and compact zwitterionic polydiacetylene micelles with tumor-targeting properties. Chemical Communications, 2015, 51, 14937-14940.	4.1	38
39	On the Characterization of the Surface Chemistry of Quantum Dots. Nano Letters, 2013, 13, 5075-5078.	9.1	37
40	Aqueous 1,3-dipolar cycloadditions promoted by copper nanoparticles in polydiacetylene micelles. Green Chemistry, 2017, 19, 3112-3115.	9.0	37
41	Stereospecific substituted alkene synthesis by organo lithium reductive alkylation of epoxides. Tetrahedron Letters, 1994, 35, 7943-7946.	1.4	37
42	State distributed PV policies: Can low cost (to government) policies have a market impact?. Energy Policy, 2013, 59, 172-181.	8.8	36
43	Tsuji–Wacker Oxidation of Terminal Olefins using a Palladium–Carbon Nanotube Nanohybrid. ChemCatChem, 2015, 7, 2318-2322.	3.7	35
44	Enantioselective synthesis of levomilnacipran. Chemical Communications, 2012, 48, 8111.	4.1	34
45	Nanometric Micelles with Photoâ€Triggered Cytotoxicity. Advanced Functional Materials, 2014, 24, 5246-5252.	14.9	33
46	Compact tridentate ligands for enhanced aqueous stability of quantum dots and in vivo imaging. Chemical Science, 2013, 4, 411-417.	7.4	32
47	Cellular uptake and trafficking of polydiacetylene micelles. Nanoscale, 2013, 5, 1955.	5.6	32
48	A doubly responsive probe for the detection of Cys4-tagged proteins. Chemical Communications, 2015, 51, 11482-11484.	4.1	32
49	Synthesis of Quinoxalines by a Carbon Nanotube–Gold Nanohybrid atalyzed Cascade Reaction of Vicinal Diols and Keto Alcohols with Diamines. ChemCatChem, 2015, 7, 57-61.	3.7	32
50	Catalytic Processes for the Neutralization of Sulfur Mustard. Chemistry - A European Journal, 2021, 27, 54-68.	3.3	31
51	Enantioselective synthesis of α-nitro-δ-ketosulfones via a quinine–squaramide catalyzed conjugate addition of α-nitrosulfones to enones. Chemical Communications, 2013, 49, 10632.	4.1	30
52	Biotin-functionalized targeted polydiacetylene micelles. Chemical Communications, 2018, 54, 3613-3616.	4.1	30
53	Enhanced drug loading in polymerized micellar cargo. Organic and Biomolecular Chemistry, 2010, 8, 3902.	2.8	29
54	Deoxygenation of amine N-oxides using gold nanoparticles supported on carbon nanotubes. RSC Advances, 2015, 5, 50865-50868.	3.6	29

#	Article	IF	CITATIONS
55	Mild and selective catalytic oxidation of organic substrates by a carbon nanotube-rhodium nanohybrid. Catalysis Science and Technology, 2015, 5, 4542-4546.	4.1	29
56	Supramolecular assembly of cobaloxime on nanoring-coated carbon nanotubes: addressing the stability of the pyridine–cobalt linkage under hydrogen evolution turnover conditions. Chemical Communications, 2016, 52, 11783-11786.	4.1	28
57	Carbon nanotube–copper ferrite-catalyzed aqueous 1,3-dipolar cycloaddition of <i>in situ</i> i>-generated organic azides with alkynes. Chemical Communications, 2018, 54, 3644-3647.	4.1	27
58	Copper complexes and carbon nanotube–copper ferrite-catalyzed benzenoid A-ring selenation of quinones: an efficient method for the synthesis of trypanocidal agents. New Journal of Chemistry, 2019, 43, 13751-13763.	2.8	27
59	Regiospecific access to cyclic allylic alcohols by reductive alkylation of \hat{l}_{\pm} -alkyloxy-epoxides. Chemical Communications, 1996, , 549-550.	4.1	26
60	Rearrangement of α-Amino Cyclopropanone Hydrate:  A Novel Route to Labeled Amino Acids. Journal of Organic Chemistry, 2001, 66, 305-308.	3.2	26
61	Selective Deoxygenation of Leurosine:Â Concise Access to Anhydrovinblastine. Journal of Organic Chemistry, 2002, 67, 6571-6574.	3.2	26
62	Ph3BiCO3: a mild reagent for in situ oxidation of urazoles to triazolinediones. Tetrahedron Letters, 2003, 44, 6591-6593.	1.4	26
63	Oligomeric PEG-Phospholipids for Solubilization and Stabilization of Fluorescent Nanocrystals in Water. Langmuir, 2008, 24, 3016-3019.	3.5	26
64	Comparison of objective lenses for multiphoton microscopy in turbid samples. Biomedical Optics Express, 2015, 6, 3113.	2.9	26
65	Aptamer-decorated polydiacetylene micelles with improved targeting of cancer cells. International Journal of Pharmaceutics, 2019, 565, 59-63.	5.2	25
66	Diethylzinc/Cull-mediated alkylation of aromatic amines and related compounds. Tetrahedron Letters, 2001, 42, 8301-8302.	1.4	24
67	Concise Synthesis of Anhydrovinblastine from Leurosine. Organic Letters, 2002, 4, 1151-1153.	4.6	24
68	CrAsHâ^'Quantum Dot Nanohybrids for Smart Targeting of Proteins. Journal of the American Chemical Society, 2008, 130, 8596-8597.	13.7	24
69	Stereospecific substituted alkene synthesis by organo lithium reductive alkylation of epoxides. Tetrahedron Letters, 1994, 35, 7943-7946.	1.4	23
70	Chemistry of Pentavalent Organobismuth Reagents. Regioselective \hat{I} ±-Arylation of \hat{I} ±, \hat{I} 2-Unsaturated Carbonyls and Related Systems. Journal of Organic Chemistry, 1999, 64, 6915-6917.	3.2	23
71	BF3·OEt2-Mediated Rearrangement of Cyclopropyl Carbinols: A Concise Route to Polycyclic Cyclobutanes. Journal of Organic Chemistry, 2001, 66, 4450-4452.	3.2	23
72	Solvent-free hydrosilylation of alkenes and alkynes using recyclable platinum on carbon nanotubes. Green Chemistry, 2021, 23, 815-820.	9.0	23

#	Article	IF	CITATIONS
73	Carbon nanotubes-gold nanohybrid as potent electrocatalyst for oxygen reduction in alkaline media. Nanoscale, 2015, 7, 17274-17277.	5.6	22
74	Recent advances in the field of nanometric drug carriers. Future Medicinal Chemistry, 2009, 1, 693-711.	2.3	21
75	Combination of Aryl Diselenides/Hydrogen Peroxide and Carbonâ€Nanotube/Rhodium Nanohybrids for Naphthol Oxidation: An Efficient Route towards Trypanocidal Quinones. Chemistry - A European Journal, 2018, 24, 15227-15235.	3.3	21
76	Metalated epoxides as carbenoids. Stereospecific synthesis of functionalized spiro cyclopropanes via highly strained tricyclic intermediates. Tetrahedron Letters, 1997, 38, 4071-4074.	1.4	20
77	Carbon Nanotube–Ruthenium Hybrids for the Partial Reduction of 2â€Nitrochalcones: Easy Access to Quinoline <i>N</i> â€Oxides. ChemCatChem, 2016, 8, 1298-1302.	3.7	20
78	Supramolecular Assembly of Gold Nanoparticles on Carbon Nanotubes and Catalysis of Selected Organic Transformations. Synlett, 2016, 27, 1179-1186.	1.8	20
79	Carbon nanotube-polyoxometalate nanohybrids as efficient electro-catalysts for the hydrogen evolution reaction. Carbon, 2022, 188, 523-532.	10.3	20
80	The chemistry of pentavalent organobismuth reagents. New preparative methods for aryl bismuth (V) carboxylates and sulfonates. Tetrahedron Letters, 1997, 38, 365-366.	1.4	19
81	Ring expansions of a spirocyclohexadienone system. Tetrahedron Letters, 2006, 47, 9093-9094.	1.4	19
82	Total Syntheses of (+)â€Haplophytine. Angewandte Chemie - International Edition, 2009, 48, 7480-7483.	13.8	19
83	On the Elucidation of the Mechanism of <i>Vinca</i> Alkaloid Fluorination in Superacidic Medium. Organic Letters, 2011, 13, 4116-4119.	4.6	19
84	In vivo uptake and cellular distribution of gold nanoshells in a preclinical model of xenografted human renal cancer. Gold Bulletin, 2013, 46, 257-265.	2.4	19
85	Direct aerobic oxidation of alcohols into esters catalyzed by carbon nanotube–gold nanohybrids. Nanoscale Advances, 2019, 1, 1181-1185.	4.6	19
86	Tumor-targeted superfluorinated micellar probe for sensitive <i>in vivo</i> ¹⁹ F-MRI. Nanoscale, 2021, 13, 2373-2377.	5.6	19
87	Synthesis of γ-Amino Acids by Rearrangement of α-Cyanocyclopropanone Hydrates:  Application to the Regioselective Labeling of Amino Acids. Journal of Organic Chemistry, 2001, 66, 6487-6489.	3.2	18
88	Capillary electrophoresis–inductively coupled plasma-mass spectrometry hyphenation for the determination at the nanogram scale of metal affinities and binding constants of phosphorylated ligands. Journal of Chromatography A, 2012, 1229, 280-287.	3.7	18
89	Metalated epoxides as carbenoids. Competing C–H and CC insertion in α-alkoxy epoxide systems. Tetrahedron, 2003, 59, 9701-9706.	1.9	17
90	Comparative assessment of the in vitro toxicity of some functionalized carbon nanotubes and fullerenes. RSC Advances, 2015, 5, 68446-68453.	3.6	17

#	Article	IF	CITATIONS
91	Synthesis of fluorinated catharanthine analogues and investigation of their biomimetic coupling with vindoline. Organic and Biomolecular Chemistry, 2013, 11, 5885.	2.8	16
92	Direct and co-catalytic oxidative aromatization of 1,4-dihydropyridines and related substrates using gold nanoparticles supported on carbon nanotubes. Catalysis Science and Technology, 2016, 6, 6476-6479.	4.1	16
93	Tailorâ€Made Polydiacetylene Micelles for the Catalysis of 1,3â€Dipolar Cycloadditions in Water. Advanced Synthesis and Catalysis, 2020, 362, 4425-4431.	4.3	16
94	Approaching Industrially Relevant Current Densities for Hydrogen Oxidation with a Bioinspired Molecular Catalytic Material. Journal of the American Chemical Society, 2021, 143, 18150-18158.	13.7	16
95	Alkylation of aromatic amines and related compounds using a copper(II)-aluminum(III) couple. Tetrahedron Letters, 1996, 37, 3295-3298.	1.4	15
96	Metalated Epoxides as Carbenoids â° Further Advances in the Stereospecific Synthesis of Spirocyclopropanes. European Journal of Organic Chemistry, 2001, 2001, 4107-4110.	2.4	15
97	Semisynthesis of Macrocarpal C and Analogues by Selective Dehydration of Macrocarpal A or B. Journal of Natural Products, 2013, 76, 2346-2349.	3.0	15
98	Population structure of the black arowana (Osteoglossum ferreirai) in Brazil and Colombia: implications for its management. Conservation Genetics, 2013, 14, 695-703.	1.5	15
99	Enantioselective synthesis of \hat{l}^3 -tetrasubstituted nitrosulfonyl carboxylates and amides via < scp > l < scp > -tert-leucine-derived-squaramide catalyzed conjugate addition of nitrosulfones to acrylates and acrylamides. Organic and Biomolecular Chemistry, 2014, 12, 6425-6431.	2.8	15
100	Polydiacetylene Nanotubes in Heterogeneous Catalysis: Application to the Goldâ€Mediated Oxidation of Silanes. Macromolecular Chemistry and Physics, 2015, 216, 2398-2403.	2.2	15
101	Selective Conversion of Nitroarenes to Nâ€Aryl Hydroxylamines Catalysed by Carbonâ€Nanotubeâ€Supported Nickel(II) Hydroxide. ChemistrySelect, 2017, 2, 5891-5894.	1.5	15
102	Metalated Epoxides as Carbenoids. Solvent Effect on Competing Intramolecular Câ ⁻ H and Intermolecular Câ ⁻ Li Insertions in α-Alkoxy Epoxide Systems. Journal of Organic Chemistry, 1999, 64, 9279-9281.	3.2	14
103	Photoluminescent polysaccharide-coated germanium(IV) oxide nanoparticles. Colloid and Polymer Science, 2016, 294, 1225-1235.	2.1	14
104	Human Immune Protein C1q Selectively Disaggregates Carbon Nanotubes. Nano Letters, 2017, 17, 3409-3415.	9.1	14
105	Impact of the surface charge of polydiacetylene micelles on their interaction with human innate immune protein C1q and the complement system. International Journal of Pharmaceutics, 2018, 536, 434-439.	5 . 2	14
106	Tumor targeted micellar nanocarriers assembled from epipodophyllotoxin-based amphiphiles. Nanoscale, 2019, 11, 9756-9759.	5.6	14
107	Nanotoxicology at the particle/micelle frontier: influence of core-polymerization on the intracellular distribution, cytotoxicity and genotoxicity of polydiacetylene micelles. Nanoscale, 2020, 12, 2452-2463.	5.6	14
108	Acidic isomerization of vicinally substituted (cis)-acceptor-donor cyclopropanes via an open ring mechanism. Tetrahedron Letters, 1994, 35, 2017-2020.	1.4	13

#	Article	IF	CITATIONS
109	Catalytic Dehydrosulfurization of Thioamides to Nitriles by Gold Nanoparticles Supported on Carbon Nanotubes. ChemCatChem, 2019, 11, 5758-5761.	3.7	13
110	Carbon nanotube–ruthenium hybrid towards mild oxidation of sulfides to sulfones: efficient synthesis of diverse sulfonyl compounds. Catalysis Science and Technology, 2019, 9, 2742-2748.	4.1	13
111	Carbon Nanotube–Acridine Nanohybrids: Spectroscopic Characterization of Photoinduced Electron Transfer. Chemistry - A European Journal, 2009, 15, 3882-3888.	3.3	12
112	Chitosan-mediated synthesis of carbon nanotube-gold nanohybrids. Science China Chemistry, 2010, 53, 2015-2018.	8.2	12
113	Selfâ€assembled Polydiacetylene Nanoribbons for Semiâ€heterogeneous and Enantioselective Organocatalysis of Aldol Reactions in Water. ChemCatChem, 2020, 12, 1156-1160.	3.7	12
114	Metalated Epoxides as Carbenoids. Solvent Effect on the Alkyl 1,2-Shift in α-Hydroxy Epoxide Systems. Journal of Organic Chemistry, 1998, 63, 3808-3809.	3.2	11
115	Direct and Coâ€catalytic Oxidation of Hydroxylamines to Nitrones Promoted by Rhodium Nanoparticles Supported on Carbon Nanotubes. ChemCatChem, 2017, 9, 2091-2094.	3.7	11
116	Catalytic hydrothiolation of alkenes and alkynes using bimetallic RuRh nanoparticles on carbon nanotubes. Green Chemistry, 2022, 24, 1231-1237.	9.0	11
117	α-Aminocyclopropanone hydrates: potential transition-state analog inhibitors of serine proteases. Tetrahedron Letters, 2001, 42, 3183-3185.	1.4	10
118	Asymmetric Synthesis of (+)-Mequitazine from Quinine. Organic Letters, 2011, 13, 3549-3551.	4.6	10
119	Straightforward conversion of alcohols into dibenzenesulfonimides. Tetrahedron Letters, 2006, 47, 8457-8458.	1.4	9
120	Supramolecular Assembly of Gold Nanoparticles on Carbon Nanotubes: Application to the Catalytic Oxidation of Hydroxylamines. Nanomaterials, 2016, 6, 37.	4.1	9
121	Polyamine transport system-targeted nanometric micelles assembled from epipodophyllotoxin-amphiphiles. Chemical Communications, 2019, 55, 14968-14971.	4.1	9
122	Purification of Single-Walled Boron Nitride Nanotubes and Boron Nitride Cages. Journal of Nanoscience and Nanotechnology, 2007, 7, 3528-3532.	0.9	8
123	Phosphine-Catalyzed Synthesis of Unsymmetrical 1,3-Bis- and Trisphosphorus Ligands. Synlett, 2009, 2009, 1466-1470.	1.8	8
124	In Situ Electron-Beam Polymerization Stabilized Quantum Dot Micelles. Langmuir, 2011, 27, 4358-4361.	3.5	8
125	Total Syntheses of (±)â€Aspidophyllineâ€A. Angewandte Chemie - International Edition, 2014, 53, 4041-4042.	13.8	8
126	Tuning the cationic interface of simple polydiacetylene micelles to improve siRNA delivery at the cellular level. Nanoscale Advances, 2019, 1, 4331-4338.	4.6	8

#	Article	IF	CITATIONS
127	Diastereocontrol in the opening of vic-acceptor-donor cyclopropanes. Application to the synthesis of (cis) 1-EWG-2-hydroxymethylcyclopropanes. Tetrahedron Letters, 1994, 35, 5633-5636.	1.4	7
128	Mode of PEG Coverage on Carbon Nanotubes Affects Binding of Innate Immune Protein C1q. Journal of Physical Chemistry B, 2018, 122, 757-763.	2.6	7
129	Where do nanometric micelles stand for biomedical applications?. Future Medicinal Chemistry, 2018, 10, 1137-1139.	2.3	7
130	Broadband optical limiting optimization by combination of carbon nanotubes and two-photon absorbing chromophores in liquids. , 2003, , .		6
131	Straightforward Conversion of Alcohols into Nitriles. Synthetic Communications, 2010, 40, 1646-1649.	2.1	6
132	Carbon nanotube-mediated delivery of budesonide to macrophages. RSC Advances, 2016, 6, 53282-53287.	3.6	6
133	Triphenylbismuth carbonate-mediated oxidation of hydroxylamines to nitrones and in situ 1,3-dipolar cycloaddition. RSC Advances, 2016, 6, 89238-89241.	3.6	6
134	Direct integration of gold-carbon nanotube hybrids in continuous-flow microfluidic chips: A versatile approach for nanocatalysis. Journal of Colloid and Interface Science, 2022, 613, 359-367.	9.4	6
135	Catharanthinol and dihydrocatharanthinol: two Iboga-class alkaloids. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, 0792-0794.	0.4	5
136	Silica encapsulation of luminescent silicon nanoparticles: stable and biocompatible nanohybrids. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	5
137	Polymerâ€Decorated Carbon Nanotubes as Transducers for Labelâ€Free Photonic Biosensors. Chemistry - A European Journal, 2015, 21, 18649-18653.	3.3	5
138	Triphenylbismuth Dichlorideâ€Mediated Conversion of Thioamides to Nitriles. European Journal of Organic Chemistry, 2019, 2019, 4043-4045.	2.4	5
139	Leurosine methiodide–methanol–water (1/3/2). Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 225-226.	0.4	4
140	Unexpected Outcome in the Reaction of Triazolinedione with Carbon Nanotubes. European Journal of Organic Chemistry, 2007, 2007, 4817-4819.	2.4	4
141	A straightforward enantioselective synthesis of F17807. Tetrahedron, 2015, 71, 9383-9387.	1.9	4
142	Tungsten (VI) based "molecular puzzle―photoluminescent nanoparticles easily covered with biocompatible natural polysaccharides via direct chelation. Journal of Colloid and Interface Science, 2018, 512, 308-317.	9.4	4
143	Recognition protein C1q of innate immunity agglutinates nanodiamonds without activating complement. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 292-302.	3.3	4
144	One step synthesis of deuterium or tritium labelled imines and aldazine under mild conditions. Journal of Labelled Compounds and Radiopharmaceuticals, 1998, 41, 871-878.	1.0	3

#	Article	IF	CITATIONS
145	Stereoselective Titanium Mediated Trimerisation of Methyl Vinyl Ketone: A Novel Carbocyclisation Reaction. Synthetic Communications, 1998, 28, 2685-2688.	2.1	3
146	Synthesis of Difluorocatharanthine and Investigation of its Biomimetic Coupling with Vindoline. Chemistry - A European Journal, 2013, 19, 1170-1173.	3.3	3
147	Rearrangement of 2-Bromo-1-(bromomethyl)ethyl Esters Under Basic Conditions: Scope and Mechanism. Synthesis, 2013, 45, 2861-2866.	2.3	3
148	Phosphites mediated decarboxylation of ?-iminoacids. A straightforward route to labelled ?-aminophosphates. Journal of Labelled Compounds and Radiopharmaceuticals, 2000, 43, 287-296.	1.0	2
149	Reflections on 50 Years of Neuroscience Nursing: Neuro-Oncology, Moving Forward by Looking Back. Journal of Neuroscience Nursing, 2018, 50, 124-128.	1.1	2
150	New and convenient synthesis of a tritiated photoactivatable nicotinic agonist: [3H]-AC5. Journal of Labelled Compounds and Radiopharmaceuticals, 2002, 45, 943-953.	1.0	1
151	Recent Progress on the Preparation of Luminescent Silicon Nanoparticles for Bio-Imaging Applications. , 2010, , .		1
152	Enantioselective synthesis of a cyclobutane analogue of Milnacipran. Organic Chemistry Frontiers, 2017, 4, 1276-1280.	4.5	1
153	Vapor phase catalytic photooxidation of sulfides to sulfoxides: application to the neutralization of sulfur mustard simulants. Catalysis Science and Technology, 2022, 12, 1751-1755.	4.1	1
154	Enantioselective Synthesis of Chromenes ChemInform, 2003, 34, no.	0.0	0
155	Ph3BiCO3: A Mild Reagent for in situ Oxidation of Urazoles to Triazolinediones ChemInform, 2003, 34, no.	0.0	0
156	Metalated Epoxides as Carbenoids. Competing C—H and C=C Insertion in α-Alkoxy Epoxide Systems ChemInform, 2004, 35, no.	0.0	0
157	Le projet DOT-IMAGER. Irbm, 2010, 31, 70-72.	5.6	0
158	An Optimized Azimuthal Scanning Platform for TIRF and HILO Imaging. Biophysical Journal, 2014, 106, 402a.	0.5	0