
Didier Voisin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7811731/publications.pdf Version: 2024-02-01

DIDIED VOISIN

#	Article	IF	CITATIONS
1	A criterion for new particle formation in the sulfur-rich Atlanta atmosphere. Journal of Geophysical Research, 2005, 110, .	3.3	187
2	Comprehensive primary particulate organic characterization of vehicular exhaust emissions in France. Atmospheric Environment, 2009, 43, 6190-6198.	4.1	150
3	Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta. Journal of Geophysical Research, 2005, 110, .	3.3	121
4	Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments. Atmospheric Chemistry and Physics, 2010, 10, 4085-4095.	4.9	121
5	Thermal Desorption Chemical Ionization Mass Spectrometer for Ultrafine Particle Chemical Composition. Aerosol Science and Technology, 2003, 37, 471-475.	3.1	118
6	Organics in environmental ices: sources, chemistry, and impacts. Atmospheric Chemistry and Physics, 2012, 12, 9653-9678.	4.9	110
7	Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, structure–activity relationships and atmospheric implications. Atmospheric Environment, 2005, 39, 7667-7688.	4.1	94
8	Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille. Atmospheric Chemistry and Physics, 2011, 11, 2059-2079.	4.9	90
9	Towards a better understanding of the origins, chemical composition and aging of oxygenated organic aerosols: case study of a Mediterranean industrialized environment, Marseille. Atmospheric Chemistry and Physics, 2013, 13, 7875-7894.	4.9	87
10	The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter. Scientific Reports, 2017, 7, 11617.	3.3	72
11	Scavenging of acidic gases (HCOOH, CH3COOH, HNO3, HCl, and SO2) and ammonia in mixed liquid-solid water clouds at the Puy de Dôme mountain (France). Journal of Geophysical Research, 2000, 105, 6817-6835.	3.3	68
12	Can We Model Snow Photochemistry? Problems with the Current Approaches. Journal of Physical Chemistry A, 2013, 117, 4733-4749.	2.5	68
13	Comparison of analytical methods for Humic Like Substances (HULIS) measurements in atmospheric particles. Atmospheric Chemistry and Physics, 2009, 9, 5949-5962.	4.9	65
14	Oligomer and SOA formation through aqueous phase photooxidation of methacrolein and methyl vinyl ketone. Atmospheric Environment, 2012, 49, 123-129.	4.1	64
15	A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow. Cryosphere, 2017, 11, 2633-2653.	3.9	61
16	A model for tropospheric multiphase chemistry: application to one cloudy event during the CIME experiment. Atmospheric Environment, 2000, 34, 5015-5036.	4.1	56
17	Hydroxyl radical and NO _{<i>x</i>} production rates, black carbon concentrations and lightâ€absorbing impurities in snow from field measurements of light penetration and nadir reflectivity of onshore and offshore coastal Alaskan snow. Journal of Geophysical Research, 2012, 117, .	3.3	52
18	Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow. Journal of Geophysical Research, 2012, 117, .	3.3	49

DIDIER VOISIN

#	Article	IF	CITATIONS
19	Oxidation of Atmospheric Humic Like Substances by Ozone: A Kinetic and Structural Analysis Approach. Environmental Science & Technology, 2011, 45, 5238-5244.	10.0	47
20	Radical mechanisms of methyl vinyl ketone oligomerization through aqueous phase OH-oxidation: on the paradoxical role of dissolved molecular oxygen. Atmospheric Chemistry and Physics, 2013, 13, 6473-6491.	4.9	47
21	Soluble, light-absorbing species in snow at Barrow, Alaska. Journal of Geophysical Research, 2011, 116, .	3.3	44
22	In situ continuous visible and near-infrared spectroscopy of an alpine snowpack. Cryosphere, 2017, 11, 1091-1110.	3.9	43
23	The Uptake of Methyl Vinyl Ketone, Methacrolein, and 2-Methyl-3-butene-2-ol onto Sulfuric Acid Solutions. Journal of Physical Chemistry A, 2006, 110, 2387-2395.	2.5	42
24	Chemical composition of the snowpack during the OASIS spring campaign 2009 at Barrow, Alaska. Journal of Geophysical Research, 2012, 117, .	3.3	39
25	Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation – Part 1: Aging processes of oligomers. Atmospheric Chemistry and Physics, 2015, 15, 21-35.	4.9	39
26	Influence of light-absorbing particles on snow spectral irradiance profiles. Cryosphere, 2019, 13, 2169-2187.	3.9	31
27	The specific surface area and chemical composition of diamond dust near Barrow, Alaska. Journal of Geophysical Research, 2011, 116, .	3.3	27
28	Tracing the Fate of Atmospheric Nitrate in a Subalpine Watershed Using Δ ¹⁷ 0. Environmental Science & Technology, 2018, 52, 5561-5570.	10.0	27
29	Quantification of the radiative impact of light-absorbing particles during two contrasted snow seasons at Col du Lautaret (2058 m a.s.l., French Alps). Cryosphere, 2020, 14, 4553-4579.	3.9	26
30	Sensitive determination of glyoxal, methylglyoxal and hydroxyacetaldehyde in environmental water samples by using dansylacetamidooxyamine derivatization and liquid chromatography/fluorescence. Analytica Chimica Acta, 2011, 704, 162-173.	5.4	25
31	Atmospheric nitrate export in streams along a montane to urban gradient. Science of the Total Environment, 2018, 633, 329-340.	8.0	20
32	Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation. Journal of Physical Chemistry A, 2017, 121, 7641-7654.	2.5	14
33	Motion of dust particles in dry snow under temperature gradient metamorphism. Cryosphere, 2019, 13, 2345-2359.	3.9	14
34	Uptake of nopinone by water: Comparison between aqueous-and gas-phase oxidation of organic compounds in the atmosphere. Geophysical Research Letters, 2001, 28, 1965-1968.	4.0	12
35	Simple and Reversible Transformation of an APCI/MS/MS Into an Aerosol Mass Spectrometer: Development and Characterization of a New Inlet. Aerosol Science and Technology, 2008, 42, 182-193.	3.1	7
36	Fostering multidisciplinary research on interactions between chemistry, biology, and physics within the coupled cryosphere-atmosphere system. Elementa, 2019, 7, .	3.2	6

#	Article	IF	CITATIONS
37	Gas characterization based on a snapshot interferometric imaging spectrometer. , 2019, , .		3
38	Modeling an extreme dust deposition event to the French alpine seasonal snowpack in April 2018: Meteorological context and predictions of dust deposition. Journal of Geophysical Research D: Atmospheres, 0, , .	3.3	2
39	Characterisation of a Snapshot Fourier Transform Imaging Spectrometer Based on an Array of Fabry-Perot Interferometers. , 2020, , .		1