
Huiqing Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7811626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy saving techniques for reducing the heating cost of conventional greenhouses. Biosystems Engineering, 2019, 178, 9-33.	4.3	113
2	Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses. Computers and Electronics in Agriculture, 2018, 150, 235-244.	7.7	56
3	Modeling heating demands in a Chinese-style solar greenhouse using the transient building energy simulation model TRNSYS. Journal of Building Engineering, 2020, 29, 101114.	3.4	48
4	Diurnal Odor, Ammonia, Hydrogen Sulfide, and Carbon Dioxide Emission Profiles of Confined Swine Grower/Finisher Rooms. Journal of the Air and Waste Management Association, 2008, 58, 1434-1448.	1.9	46
5	Biogas production estimation using data-driven approaches for cold region municipal wastewater anaerobic digestion. Journal of Environmental Management, 2020, 253, 109708.	7.8	40
6	A quasi-steady state model for predicting the heating requirements of conventional greenhouses in cold regions. Information Processing in Agriculture, 2018, 5, 33-46.	4.1	32
7	An active solar water wall for passive solar greenhouse heating. Applied Energy, 2022, 308, 118270.	10.1	28
8	Heating demand and economic feasibility analysis for year-round vegetable production in Canadian Prairies greenhouses. Information Processing in Agriculture, 2019, 6, 81-90.	4.1	27
9	Energy-efficient design of greenhouse for Canadian Prairies using a heating simulation model. International Journal of Energy Research, 2018, 42, 2263-2272.	4.5	24
10	Seasonal Odor, Ammonia, Hydrogen Sulfide, and Carbon Dioxide Concentrations and Emissions from Swine Grower-Finisher Rooms. Journal of the Air and Waste Management Association, 2010, 60, 471-480.	1.9	23
11	Dispersion modeling of odour, gases, and respirable dust using AERMOD for poultry and dairy barns in the Canadian Prairies. Science of the Total Environment, 2019, 690, 620-628.	8.0	22
12	Sensitivity analysis of CSGHEAT model for estimation of heating consumption in a Chinese-style solar greenhouse. Computers and Electronics in Agriculture, 2018, 154, 99-111.	7.7	17
13	Dehumidification requirement modelling and control strategy for greenhouses in cold regions. Computers and Electronics in Agriculture, 2021, 187, 106264.	7.7	17
14	Relationships between odor properties and determination of odor concentration limits in odor impact criteria for poultry and dairy barns. Science of the Total Environment, 2018, 630, 1484-1491.	8.0	14
15	Diurnal and seasonal variations of greenhouse gas emissions from a naturally ventilated dairy barn in a cold region. Atmospheric Environment, 2018, 172, 74-82.	4.1	13
16	Evaluation of a field olfactometer in odour concentration measurement. Biosystems Engineering, 2019, 187, 239-246.	4.3	13
17	Development of a Livestock Odor Dispersion Model: Part II. Evaluation and Validation. Journal of the Air and Waste Management Association, 2011, 61, 277-284.	1.9	10
18	Evaluation of a cloud cover based model for estimation of hourly global solar radiation in Western Canada. International Journal of Sustainable Energy, 2019, 38, 64-73.	2.4	10

Huiqing Guo

#	Article	IF	CITATIONS
19	A Time-Dependent Model for Predicting Thermal Environment of Mono-Slope Solar Greenhouses in Cold Regions. Energies, 2021, 14, 5956.	3.1	10
20	Diurnal and seasonal variations of odor and gas emissions from a naturally ventilated free-stall dairy barn on the Canadian prairies. Journal of the Air and Waste Management Association, 2017, 67, 1092-1105.	1.9	9
21	Diurnal and seasonal variations of greenhouse gas emissions from a commercial broiler barn and cage-layer barn in the Canadian Prairies. Environmental Pollution, 2019, 248, 726-735.	7.5	9
22	Cloud cover-based models for estimation of global solar radiation: A review and case study. International Journal of Green Energy, 2022, 19, 175-189.	3.8	9
23	Characterization of electrical current and liquid droplets deposition area in a capillary electrospray. Results in Engineering, 2021, 9, 100206.	5.1	8
24	Determination of Setback Distances for Livestock Operations Using a New Livestock Odor Dispersion Model (LODM). Journal of the Air and Waste Management Association, 2011, 61, 1369-1381.	1.9	7
25	Development of a Livestock Odor Dispersion Model: Part I. Model Theory and Development. Journal of the Air and Waste Management Association, 2011, 61, 269-276.	1.9	7
26	Evaluation of odour properties, their relationships, and impact of an oil refinery plant on the surrounding environment using field measurements. Atmospheric Environment, 2020, 230, 117480.	4.1	7
27	Developing an odour emission factor for an oil refinery plant using reverse dispersion modeling. Atmospheric Environment, 2020, 222, 117167.	4.1	6
28	Annual Variations of Odor Concentrations and Emissions from Swine Gestation, Farrowing, and Nursery Buildings. Journal of the Air and Waste Management Association, 2011, 61, 1361-1368.	1.9	5
29	Toxic gas and respirable dust concentrations and emissions from broiler and cage-layer barns in the Canadian Prairies. Environmental Science and Pollution Research, 2020, 27, 21680-21691.	5.3	4
30	Odour dispersion modelling, impact criteria, and setback distances for an oil refinery plant. Atmospheric Environment, 2022, 270, 118879.	4.1	4
31	Development of a method for condensation rate measurement on flat surfaces. Information Processing in Agriculture, 2018, 5, 490-497.	4.1	3
32	Characterisation of engineered water nanostructures (EWNS) and evaluation of their efficacy in inactivating Escherichia coli at conditions relevant to livestock operations. Biosystems Engineering, 2021, 212, 431-441.	4.3	3
33	Reduction of airborne particulate matter from pig and poultry rearing facilities using engineered water nanostructures. Biosystems Engineering, 2022, 218, 1-9.	4.3	3
34	Diurnal and seasonal variations of odor emissions from broiler and cage-layer barns in the Canadian Prairies. Environmental Science and Pollution Research, 2020, 27, 26631-26642.	5.3	2
35	Effects of Operating Parameters on the Efficacy of Engineered Water Nanostructures (EWNS) in Inactivating Escherichia coli on Stainless-Steel Surfaces. Transactions of the ASABE, 2021, 64, 1913-1920.	1.1	2
36	Sensitivity Analysis of the DehumReq Model to Evaluate the Impact of Predominant Factors on Dehumidification Requirement of Greenhouses in Cold Regions. Information Processing in Agriculture, 2022, , .	4.1	2

Huiqing Guo

#	Article	IF	CITATIONS
37	Sensitivity analysis of a livestock odour dispersion model (LODM) to input parameters, Part 2: Meteorological parameters Canadian Biosystems Engineering / Le Genie Des Biosystems Au Canada, 2013, 55, 6.13-6.23.	0.1	1
38	Research Note: Evaluation of the efficacy of engineered water nanostructures in inactivating airborne bacteria in poultry houses. Poultry Science, 2022, 101, 101580.	3.4	1
39	Sensitivity analysis of a livestock odour dispersion model (LODM) to input parameters: Part I, source parameters and surface parameters. Canadian Biosystems Engineering / Le Genie Des Biosystems Au Canada, 2013, 55, 6.1-6.11.	0.1	0
40	<i>A Dispersion-Based Tool for Assessing Odor Impact of Hog Operations</i> . , 2019, , .		0