Matteo Castronovo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7811239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational Design of pH-Controlled DNA Strand Displacement. Journal of the American Chemical Society, 2014, 136, 16469-16472.	13.7	110
2	Folding-Upon-Binding and Signal-On Electrochemical DNA Sensor with High Affinity and Specificity. Analytical Chemistry, 2014, 86, 9013-9019.	6.5	72
3	pH-Controlled Assembly of DNA Tiles. Journal of the American Chemical Society, 2016, 138, 12735-12738.	13.7	68
4	Quantitative Study of the Effect of Coverage on the Hybridization Efficiency of Surface-Bound DNA Nanostructures. Nano Letters, 2008, 8, 4134-4139.	9.1	64
5	Control of Steric Hindrance on Restriction Enzyme Reactions with Surface-Bound DNA Nanostructures. Nano Letters, 2008, 8, 4140-4145.	9.1	53
6	Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure. Nucleic Acids Research, 2020, 48, 4672-4680.	14.5	35
7	Electron Transfer Mediating Properties of Hydrocarbons as a Function of Chain Length: A Differential Scanning Conductive Tip Atomic Force Microscopy Investigation. ACS Nano, 2008, 2, 507-515.	14.6	27
8	Spectroscopic ellipsometry meets AFM nanolithography: about hydration of bio-inert oligo(ethylene) Tj ETQq0 0 28774-28781.	0 rgBT /O 2.8	verlock 10 Tf 26
9	Binary control of enzymatic cleavage of DNA origami by structural antideterminants. Nucleic Acids Research, 2018, 46, 995-1006.	14.5	26
10	DNA as Invisible Ink for AFM Nanolithography. Journal of the American Chemical Society, 2012, 134, 39-42.	13.7	24
11	A Selfâ€Assembled Binary Protein Model Explains Highâ€Performance Salivary Lubrication from Macro to Nanoscale. Advanced Materials Interfaces, 2020, 7, 1901549.	3.7	24
12	Two-dimensional enzyme diffusion in laterally confined DNA monolayers. Nature Communications, 2011, 2, 297.	12.8	23
13	A last-in first-out stack data structure implemented in DNA. Nature Communications, 2021, 12, 4861.	12.8	11
14	Mechanical Stabilization Effect of Water on a Membrane-like System. Journal of the American Chemical Society, 2007, 129, 2636-2641.	13.7	9
15	Integrating CRISPR/Cas systems with programmable DNA nanostructures for delivery and beyond. IScience, 2022, , 104389.	4.1	9
16	Computational Evolution of Beta-2-Microglobulin Binding Peptides for Nanopatterned Surface Sensors. International Journal of Molecular Sciences, 2021, 22, 812.	4.1	8
17	Effects of Nanoscale Confinement on the Functionality of Nucleic Acids: Implications for Nanomedicine. Current Medicinal Chemistry, 2013, 20, 3539-3557.	2.4	6
18	The Atomic Force Microscopy as a Lithographic Tool: Nanografting of DNA Nanostructures for Biosensing Applications. Methods in Molecular Biology, 2011, 749, 209-221.	0.9	5

#	Article	IF	CITATIONS
19	Digital Imprinting of RNA Recognition and Processing on a Self-Assembled Nucleic Acid Matrix. Scientific Reports, 2013, 3, 2550.	3.3	4
20	Site accessibility tailors DNA cleavage by restriction enzymes in DNA confined monolayers. Nanoscale, 2017, 9, 6399-6405.	5.6	3
21	Spatially Resolved Peptide-DNA Nanoassemblages for Biomarker Detection: A Synergy of DNA-Directed Immobilization and Nanografting. Methods in Molecular Biology, 2018, 1811, 151-162.	0.9	2
22	Emergent Properties and Functions of Nanoconfined Nucleic Acid Architectures. RNA Technologies, 2015, , 183-204.	0.3	1
23	Aqueous Lubrication: A Selfâ€Assembled Binary Protein Model Explains Highâ€Performance Salivary Lubrication from Macro to Nanoscale (Adv. Mater. Interfaces 1/2020). Advanced Materials Interfaces, 2020, 7, 2070002.	3.7	0