
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7811222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Standardizing methods to address clonality in population studies. Molecular Ecology, 2007, 16, 5115-5139.	3.9	568
2	Bioâ€ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 2018, 27, 277-284.	5.8	567
3	North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L Molecular Ecology, 2004, 13, 1923-1941.	3.9	277
4	Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica. PLoS ONE, 2012, 7, e30454.	2.5	195
5	Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Molecular Ecology, 2006, 15, 3515-3525.	3.9	173
6	Vicariance patterns in the Mediterranean Sea: east–west cleavage and low dispersal in the endemic seagrass Posidonia oceanica. Journal of Biogeography, 2007, 34, 963-976.	3.0	159
7	Assessing Genetic Diversity in Clonal Organisms: Low Diversity or Low Resolution? Combining Power and Cost Efficiency in Selecting Markers. Journal of Heredity, 2005, 96, 434-440.	2.4	156
8	European seaweeds under pressure: Consequences for communities and ecosystem functioning. Journal of Sea Research, 2015, 98, 91-108.	1.6	155
9	Network analysis identifies weak and strong links in a metapopulation system. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18824-18829.	7.1	152
10	Climate Change Impacts on Seagrass Meadows and Macroalgal Forests: An Integrative Perspective on Acclimation and Adaptation Potential. Frontiers in Marine Science, 2018, 5, .	2.5	149
11	Successful external fertilization in turbulent environments Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5286-5290.	7.1	145
12	EVOLUTION OF THE FUCACEAE (PHAEOPHYCEAE) INFERRED FROM nrDNA-ITS. Journal of Phycology, 1999, 35, 382-394.	2.3	141
13	Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Global Change Biology, 2018, 24, e55-e66.	9.5	140
14	Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Global Change Biology, 2018, 24, 4919-4928.	9.5	140
15	Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biology, 2013, 11, 6.	3.8	130
16	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009–31 July 2009. Molecular Ecology Resources, 2009, 9, 1460-1466.	4.8	128
17	ECOLOGICAL GENETICS IN THE NORTH ATLANTIC: ENVIRONMENTAL GRADIENTS AND ADAPTATION AT SPECIFIC LOCI. Ecology, 2008, 89, S91-107.	3.2	124
18	Within-population spatial genetic structure, neighbourhood size and clonal subrange in the seagrass Cymodocea nodosa. Molecular Ecology, 2005, 14, 2669-2681.	3.9	123

#	Article	IF	CITATIONS
19	Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae. Frontiers in Marine Science, 2019, 6, .	2.5	123
20	Intriguing asexual life in marginal populations of the brown seaweed Fucus vesiculosus. Molecular Ecology, 2005, 14, 647-651.	3.9	115
21	Distributional success of the marine seaweedFucus vesiculosus L. in the brackish Baltic Sea correlates with osmotic capabilities of Baltic gametes. Oecologia, 1996, 107, 1-12.	2.0	106
22	Genetic differentiation and secondary contact zone in the seagrass <i>Cymodocea nodosa</i> across the Mediterranean–Atlantic transition region. Journal of Biogeography, 2008, 35, 1279-1294.	3.0	105
23	lsolation by oceanographic distance explains genetic structure for <i>Macrocystis pyrifera</i> in the Santa Barbara Channel. Molecular Ecology, 2011, 20, 2543-2554.	3.9	102
24	Genetic structure in the Mediterranean seagrass <i>Posidonia oceanica</i> : disentangling past vicariance events from contemporary patterns of gene flow. Molecular Ecology, 2010, 19, 557-568.	3.9	101
25	Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. Journal of Biogeography, 2016, 43, 1595-1607.	3.0	92
26	Harnessing positive species interactions as a tool against climate-driven loss of coastal biodiversity. PLoS Biology, 2018, 16, e2006852.	5.6	91
27	REPRODUCTIVE SUCCESS OF FUCUS VESICULOSUS (PHAEOPHYCEAE) IN THE BALTIC SEA. Journal of Phycology, 1999, 35, 254-269.	2.3	90
28	High and Distinct Range-Edge Genetic Diversity despite Local Bottlenecks. PLoS ONE, 2013, 8, e68646.	2.5	90
29	CONTROL OF GAMETE RELEASE IN FUCOID ALGAE: SENSING HYDRODYNAMIC CONDITIONS VIA CARBON ACQUISITION. Ecology, 1998, 79, 1725-1739.	3.2	89
30	Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. Scientific Reports, 2017, 7, 44348.	3.3	87
31	Adaptive Traits Are Maintained on Steep Selective Gradients despite Gene Flow and Hybridization in the Intertidal Zone. PLoS ONE, 2011, 6, e19402.	2.5	86
32	Deep reefs are climatic refugia for genetic diversity of marine forests. Journal of Biogeography, 2016, 43, 833-844.	3.0	84
33	Phylogeny and Evolution of the Brown Algae. Critical Reviews in Plant Sciences, 2020, 39, 281-321.	5.7	82
34	Habitat continuity and geographic distance predict population genetic differentiation in giant kelp. Ecology, 2010, 91, 49-56.	3.2	81
35	Seagrasses in Portugal: A most endangered marine habitat. Aquatic Botany, 2013, 104, 193-203.	1.6	79
36	Temperature tolerance and survival of intertidal populations of the seagrass Zostera noltii (Hornemann) in Southern Europe (Ria Formosa, Portugal). Hydrobiologia, 2009, 619, 195-201.	2.0	78

#	Article	IF	CITATIONS
37	An Expressed Sequence Tag Analysis of the Intertidal Brown Seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in Response to Abiotic Stressors. Marine Biotechnology, 2010, 12, 195-213.	2.4	77
38	Climateâ€driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. Molecular Ecology, 2014, 23, 2797-2810.	3.9	77
39	Genetic entities and mating system in hermaphroditic Fucus spiralis and its close dioecious relative F. vesiculosus (Fucaceae, Phaeophyceae). Molecular Ecology, 2005, 14, 2033-2046.	3.9	74
40	Spectrum of genetic diversity and networks of clonal organisms. Journal of the Royal Society Interface, 2007, 4, 1093-1102.	3.4	72
41	Host and Environmental Specificity in Bacterial Communities Associated to Two Highly Invasive Marine Species (Genus Asparagopsis). Frontiers in Microbiology, 2016, 7, 559.	3.5	72
42	Spatial patterns of groundfish assemblages on the continental shelf of Portugal. ICES Journal of Marine Science, 2001, 58, 633-647.	2.5	70
43	Rangeâ€edge genetic diversity: locally poor extant southern patches maintain a regionally diverse hotspot in the seagrass <i>Zostera marina</i> . Molecular Ecology, 2012, 21, 1647-1657.	3.9	68
44	Golden carbon of Sargassum forests revealed as an opportunity for climate change mitigation. Science of the Total Environment, 2020, 729, 138745.	8.0	68
45	Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea. Marine Environmental Research, 2016, 113, 174-182.	2.5	67
46	Habitat continuity and steppingâ€stone oceanographic distances explain population genetic connectivity of the brown alga <i>Cystoseira amentacea</i> . Molecular Ecology, 2017, 26, 766-780.	3.9	66
47	Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic. Molecular Phylogenetics and Evolution, 2011, 58, 283-296.	2.7	65
48	Invasion Is a Community Affair: Clandestine Followers in the Bacterial Community Associated to Green Algae, Caulerpa racemosa, Track the Invasion Source. PLoS ONE, 2013, 8, e68429.	2.5	63
49	Isolation and cross-species amplification of microsatellite loci from the fucoid seaweeds Fucus vesiculosus, F. serratus and Ascophyllum nodosum (Heterokontophyta, Fucaceae). Molecular Ecology Notes, 2003, 3, 180-182.	1.7	61
50	Surfing the wave on a borrowed board: range expansion and spread of introgressed organellar genomes in the seaweed <i>Fucus ceranoides</i> L. Molecular Ecology, 2010, 19, 4812-4822.	3.9	61
51	Species distribution models and mitochondrial <scp>DNA</scp> phylogeography suggest an extensive biogeographical shift in the highâ€intertidal seaweed <i>Pelvetia canaliculata</i> . Journal of Biogeography, 2014, 41, 1137-1148.	3.0	61
52	Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp Saccharina latissima. Scientific Reports, 2018, 8, 1112.	3.3	61
53	GENOMIC DNA ISOLATION FROM GREEN AND BROWN ALGAE (CAULERPALES AND FUCALES) FOR MICROSATELLITE LIBRARY CONSTRUCTION1. Journal of Phycology, 2006, 42, 741-745.	2.3	60
54	Simple and rapid RNA extraction from freeze-dried tissue of brown algae and seagrasses. European Journal of Phycology, 2006, 41, 97-104.	2.0	60

Ċ

#	Article	IF	CITATIONS
55	Panmixia in a Fragmented and Unstable Environment: The Hydrothermal Shrimp Rimicaris exoculata Disperses Extensively along the Mid-Atlantic Ridge. PLoS ONE, 2012, 7, e38521.	2.5	59
56	Oceanographic Conditions Limit the Spread of a Marine Invader along Southern African Shores. PLoS ONE, 2015, 10, e0128124.	2.5	58
57	Revisiting synchronous gamete release by fucoid algae in the intertidal zone: fertilization success and beyond?. Integrative and Comparative Biology, 2006, 46, 587-597.	2.0	57
58	Recent population expansion and connectivity in the hydrothermal shrimp Rimicaris exoculata along the Mid-Atlantic Ridge. Journal of Biogeography, 2011, 38, 564-574.	3.0	57
59	Love Thy Neighbour: Group Properties of Gaping Behaviour in Mussel Aggregations. PLoS ONE, 2012, 7, e47382.	2.5	57
60	Summer shifts of bacterial communities associated with the invasive brown seaweed Sargassum muticum are location and tissue dependent. PLoS ONE, 2018, 13, e0206734.	2.5	57
61	Seascape drivers of <i><scp>M</scp>acrocystis pyrifera</i> population genetic structure in the northeast <scp>P</scp> acific. Molecular Ecology, 2015, 24, 4866-4885.	3.9	55
62	Hologenome theory supported by cooccurrence networks of species-specific bacterial communities in siphonous algae (<i>Caulerpa</i>). FEMS Microbiology Ecology, 2015, 91, fiv067.	2.7	55
63	Metatranscriptomes reveal functional variation in diatom communities from the Antarctic Peninsula. ISME Journal, 2015, 9, 2275-2289.	9.8	55
64	Convergent adaptation to a marginal habitat by homoploid hybrids and polyploid ecads in the seaweed genus Fucus. Biology Letters, 2006, 2, 405-408.	2.3	54
65	Driving south: a multi-gene phylogeny of the brown algal family Fucaceae reveals relationships and recent drivers of a marine radiation. BMC Evolutionary Biology, 2011, 11, 371.	3.2	53
66	Species Specificity of Bacteria Associated to the Brown Seaweeds Lobophora (Dictyotales,) Tj ETQq0 0 0 rgBT /0 Frontiers in Microbiology, 2016, 7, 316.	Overlock 1 3.5	0 Tf 50 307 1 53
67	Genetic diversity of a clonal angiosperm near its range limit: the case of Cymodocea nodosa at the Canary Islands. Marine Ecology - Progress Series, 2006, 309, 117-129.	1.9	53
68	Genes Left Behind: Climate Change Threatens Cryptic Genetic Diversity in the Canopy-Forming Seaweed Bifurcaria bifurcata. PLoS ONE, 2015, 10, e0131530.	2.5	52
69	Comparative Analysis of Stability—Genetic Diversity in Seagrass (Posidonia oceanica) Meadows Yields Unexpected Results. Estuaries and Coasts, 2010, 33, 878-889.	2.2	51
70	High connectivity across the fragmented chemosynthetic ecosystems of the deep <scp>A</scp> tlantic <scp>E</scp> quatorial <scp>B</scp> elt: efficient dispersal mechanisms or questionable endemism?. Molecular Ecology, 2013, 22, 4663-4680.	3.9	51
71	Large-Scale Prediction of Seagrass Distribution Integrating Landscape Metrics and Environmental Factors: The Case of Cymodocea nodosa (Mediterranean–Atlantic). Estuaries and Coasts, 2016, 39, 123-137.	2.2	51
72	Open Coast Seagrass Restoration. Can We Do It? Large Scale Seagrass Transplants. Frontiers in Marine Science, 2019, 6, .	2.5	50

#	Article	IF	CITATIONS
73	Drifting fronds and drifting alleles: range dynamics, local dispersal and habitat isolation shape the population structure of the estuarine seaweed <i>Fucus ceranoides</i> . Journal of Biogeography, 2012, 39, 1167-1178.	3.0	48
74	Implications of mating system for genetic diversity of sister algal species: <i>Fucus spiralis</i> and <i>Fucus vesiculosus</i> (Heterokontophyta, Phaeophyceae). European Journal of Phycology, 2007, 42, 219-230.	2.0	47
75	Feed-backs between genetic structure and perturbation-driven decline in seagrass (Posidonia) Tj ETQq1 1 0.784	-314 rgBT 1.5	/Overlock 10 47
76	A fine-tuned global distribution dataset of marine forests. Scientific Data, 2020, 7, 119.	5.3	45
77	Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L BMC Evolutionary Biology, 2012, 12, 78.	3.2	44
78	Past climate changes and strong oceanographic barriers structured lowâ€latitude genetic relics for the golden kelp <i>Laminaria ochroleuca</i> . Journal of Biogeography, 2018, 45, 2326-2336.	3.0	44
79	Fucus vesiculosus and spiralis species complex: a nested model of local adaptation at the shore level. Marine Ecology - Progress Series, 2010, 405, 163-174.	1.9	44
80	Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion. BMC Ecology, 2013, 13, 39.	3.0	43
81	Interactions of daylength, temperature and nutrients affect thresholds for life stage transitions in the kelp Laminaria digitata (Phaeophyceae). Botanica Marina, 2017, 60, .	1.2	43
82	Predicted extinction of unique genetic diversity in marine forests of Cystoseira spp Marine Environmental Research, 2018, 138, 119-128.	2.5	43
83	Taking the heat: distinct vulnerability to thermal stress of central and threatened peripheral lineages of a marine macroalga. Diversity and Distributions, 2016, 22, 1060-1068.	4.1	42
84	Entangled fates of holobiont genomes during invasion: nested bacterial and host diversities in <i>Caulerpa taxifolia</i> . Molecular Ecology, 2017, 26, 2379-2391.	3.9	42
85	GENETIC ISOLATION BETWEEN THREE CLOSELY RELATED TAXA: FUCUS VESICULOSUS, F. SPIRALIS, AND F. CERANOIDES (PHAOPHYCEAE)1. Journal of Phycology, 2005, 41, 900-905.	2.3	40
86	Evolutionary history of the seagrass genus Posidonia. Marine Ecology - Progress Series, 2011, 421, 117-130.	1.9	40
87	Closer to the rear edge: ecology and genetic diversity down the coreâ€edge gradient of a marine macroalga. Ecosphere, 2015, 6, 1-25.	2.2	39
88	Environmental drivers of rhodolith beds and epiphytes community along the South Western Atlantic coast. Marine Environmental Research, 2020, 154, 104827.	2.5	38
89	Setting preliminary biometric baselines for new target sea cucumbers species of the NE Atlantic and Mediterranean fisheries. Fisheries Research, 2016, 179, 57-66.	1.7	37
90	PHENOTYPIC DIFFERENTIATION AT SOUTHERN LIMIT BORDERS: THE CASE STUDY OF TWO FUCOID MACROALGAL SPECIES WITH DIFFERENT LIFE-HISTORY TRAITS1. Journal of Phycology, 2011, 47, 451-462.	2.3	36

#	Article	IF	CITATIONS
91	New microsatellite markers for the endemic Mediterranean seagrass Posidonia oceanica. Molecular Ecology Notes, 2003, 3, 253-255.	1.7	35
92	Cenetic sub-structure and intermediate optimal outcrossing distance in the marine angiosperm Zostera marina. Marine Biology, 2007, 152, 793-801.	1.5	35
93	Performing fish counts with a wide-angle camera, a promising approach reducing divers' limitations. Journal of Experimental Marine Biology and Ecology, 2013, 445, 93-98.	1.5	35
94	Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling. Scientific Reports, 2016, 6, 36460.	3.3	35
95	Effects of disturbance on marginal populations: human trampling on Ascophyllum nodosum assemblages at its southern distribution limit. Marine Ecology - Progress Series, 2009, 378, 81-92.	1.9	35
96	Periodicity of propagule expulsion and settlement in the competing native and invasive brown seaweeds, <i>Cystoseira humilis</i> and <i>Sargassum muticum</i> (Phaeophyta). European Journal of Phycology, 2008, 43, 275-282.	2.0	34
97	Broad scale agreement between intertidal habitats and adaptive traits on a basis of contrasting population genetic structure. Estuarine, Coastal and Shelf Science, 2013, 131, 140-148.	2.1	34
98	Extending the life history of a clonal aquatic plant: Dispersal potential of sexual and asexual propagules of Zostera noltii. Aquatic Botany, 2014, 113, 123-129.	1.6	34
99	Genetic diversity of <i>Saccharina latissima</i> (Phaeophyceae) along a salinity gradient in the North Sea–Baltic Sea transition zone. Journal of Phycology, 2016, 52, 523-531.	2.3	34
100	Kelps' Long-Distance Dispersal: Role of Ecological/Oceanographic Processes and Implications to Marine Forest Conservation. Diversity, 2018, 10, 11.	1.7	34
101	Analysis of sexual phenotype and prezygotic fertility in natural populations ofFucus spiralis, F. vesiculosus(Fucaceae, Phaeophyceae) and their putative hybrids. European Journal of Phycology, 2005, 40, 397-407.	2.0	33
102	Wider sampling reveals a nonâ€sister relationship for geographically contiguous lineages of a marine mussel. Ecology and Evolution, 2014, 4, 2070-2081.	1.9	33
103	Some don't like it hot: microhabitatâ€dependent thermal and water stresses in a trailing edge population. Functional Ecology, 2015, 29, 640-649.	3.6	33
104	Hybrid vigour for thermal tolerance in hybrids between the allopatric kelps <i>Laminaria digitata</i> and <i>L. pallida</i> (Laminariales, Phaeophyceae) with contrasting thermal affinities. European Journal of Phycology, 2019, 54, 548-561.	2.0	32
105	Spatial synchronies in the seasonal occurrence of larvae of oysters (Crassostrea gigas) and mussels (Mytilus edulis/galloprovincialis) in European coastal waters. Estuarine, Coastal and Shelf Science, 2012, 108, 52-63.	2.1	31
106	Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis. Scientific Reports, 2018, 8, 4770.	3.3	31
107	A Well-Kept Treasure at Depth: Precious Red Coral Rediscovered in Atlantic Deep Coral Gardens (SW) Tj ETQq1 1	0.784314 2.5	rgBT /Over
108	Comparison of small remotely operated vehicles and diver-operated video of circalittoral benthos.	2.0	30

Hydrobiologia, 2016, 766, 247-260.

#	Article	IF	CITATIONS
109	Integrating reproductive phenology in ecological niche models changed the predicted future ranges of a marine invader. Diversity and Distributions, 2019, 25, 688-700.	4.1	30
110	Spatial patterns of microbial communities across surface waters of the Great Barrier Reef. Communications Biology, 2020, 3, 442.	4.4	30
111	Microbiome dynamics in the tissue and mucus of acroporid corals differ in relation to host and environmental parameters. PeerJ, 2020, 8, e9644.	2.0	30
112	Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range. Marine Genomics, 2011, 4, 181-188.	1.1	29
113	Comparison of phototrophic shell-degrading endoliths in invasive and native populations of the intertidal mussel Mytilus galloprovincialis. Biological Invasions, 2013, 15, 1253-1272.	2.4	29
114	Palaeoclimatic conditions in the Mediterranean explain genetic diversity of Posidonia oceanica seagrass meadows. Scientific Reports, 2017, 7, 2732.	3.3	29
115	Connectivity, neutral theories and the assessment of species vulnerability to global change in temperate estuaries. Estuarine, Coastal and Shelf Science, 2013, 131, 52-63.	2.1	28
116	Disentangling the Influence of Mutation and Migration in Clonal Seagrasses Using the Genetic Diversity Spectrum for Microsatellites. Journal of Heredity, 2014, 105, 532-541.	2.4	28
117	Differentiation in fitness-related traits in response to elevated temperatures between leading and trailing edge populations of marine macrophytes. PLoS ONE, 2018, 13, e0203666.	2.5	28
118	Climate Oscillations, Range Shifts and Phylogeographic Patterns of North Atlantic Fucaceae. , 2016, , 279-308.		27
119	Bottom Trawling Threatens Future Climate Refugia of Rhodoliths Globally. Frontiers in Marine Science, 2021, 7, .	2.5	27
120	Characterization of microsatellite loci in the dwarf eelgrass Zostera noltii (Zosteraceae) and cross-reactivity with Z. japonica. Molecular Ecology Notes, 2004, 4, 497-499.	1.7	25
121	Timing and success of reproductive stages in the seagrass Zostera noltii. Aquatic Botany, 2006, 85, 219-223.	1.6	25
122	Response of kelps from different latitudes to consecutive heat shock. Journal of Experimental Marine Biology and Ecology, 2015, 463, 57-62.	1.5	25
123	Host Differentiation and Compartmentalization of Microbial Communities in the Azooxanthellate Cupcorals Tubastrea coccinea and Rhizopsammia goesi in the Caribbean. Frontiers in Marine Science, 2018, 5, .	2.5	25
124	Marine forests of the Mediterranean-Atlantic Cystoseira tamariscifolia complex show a southern Iberian genetic hotspot and no reproductive isolation in parapatry. Scientific Reports, 2018, 8, 10427.	3.3	25
125	Seaweed Loads Cause Stronger Bacterial Community Shifts in Coastal Lagoon Sediments Than Nutrient Loads. Frontiers in Microbiology, 2018, 9, 3283.	3.5	25
126	Mediterranean Species of Caulerpa Are Polyploid with Smaller Genomes in the Invasive Ones. PLoS ONE, 2012, 7, e47728.	2.5	24

#	Article	IF	CITATIONS
127	Spatial and Temporal Dynamics of Fucoid Populations (Ascophyllum nodosum and Fucus serratus): A Comparison between Central and Range Edge Populations. PLoS ONE, 2014, 9, e92177.	2.5	24
128	Intraspecific genetic lineages of a marine mussel show behavioural divergence and spatial segregation over a tropical/subtropical biogeographic transition. BMC Evolutionary Biology, 2015, 15, 100.	3.2	24
129	West <i>versus </i> <scp>E</scp> ast <scp>M</scp> editerranean <scp>S</scp> ea: origin and genetic differentiation of the sea cucumber <i> <scp>H</scp>olothuria polii</i> . Marine Ecology, 2015, 36, 485-495.	1.1	24
130	Brazil oil spill response: Protect rhodolith beds. Science, 2020, 367, 156-156.	12.6	24
131	Travelling in time with networks: Revealing present day hybridization versus ancestral polymorphism between two species of brown algae, Fucus vesiculosus and F. spiralis. BMC Evolutionary Biology, 2011, 11, 33.	3.2	23
132	The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints. Scientific Reports, 2017, 7, 42625.	3.3	23
133	Canopy microclimate modification in central and marginal populations of a marine macroalga. Marine Biodiversity, 2019, 49, 415-424.	1.0	23
134	Blue- and green-light signals for gamete release in the brown alga, Silvetia compressa. Oecologia, 2004, 138, 193-201.	2.0	22
135	First record of the brown mussel (Perna perna) from the European Atlantic coast. Marine Biodiversity Records, 2012, 5, .	1.2	22
136	Prezygotic Barriers to Hybridization in Marine Broadcast Spawners: Reproductive Timing and Mating System Variation. PLoS ONE, 2012, 7, e35978.	2.5	22
137	Characterization of 12 polymorphic microsatellite markers in the sugar kelp Saccharina latissima. Journal of Applied Phycology, 2016, 28, 3071-3074.	2.8	22
138	Re-assessing the origins of the invasive mussel Mytilus galloprovincialis in southern Africa. Marine and Freshwater Research, 2018, 69, 607.	1.3	22
139	Clobal biodiversity patterns of marine forests of brown macroalgae. Global Ecology and Biogeography, 2022, 31, 636-648.	5.8	22
140	Recovery after trampling disturbance in a canopy-forming seaweed population. Marine Biology, 2012, 159, 697-707.	1.5	21
141	Genetic Diversity and Local Connectivity in the Mediterranean Red Gorgonian Coral after Mass Mortality Events. PLoS ONE, 2016, 11, e0150590.	2.5	21
142	Polyploid lineages in the genus Porphyra. Scientific Reports, 2018, 8, 8696.	3.3	21
143	Suppression subtractive hybridization for studying gene expression during aerial exposure and desiccation in fucoid algae. European Journal of Phycology, 2001, 36, 359-366.	2.0	20
144	SELECTIVE ELIMINATION OF CHLOROPLASTIDIAL DNA FOR METAGENOMICS OF BACTERIA ASSOCIATED WITH THE GREEN ALGA <i>CAULERPA TAXIFOLIA</i> (BRYOPSIDOPHYCEAE) ¹ . Journal of Phycology, 2012, 48, 483-490.	2.3	19

#	Article	IF	CITATIONS
145	Accounting for uncertainty in predictions of a marine species: Integrating population genetics to verify past distributions. Ecological Modelling, 2017, 359, 229-239.	2.5	19
146	Thermal traits for reproduction and recruitment differ between Arctic and Atlantic kelp Laminaria digitata. PLoS ONE, 2020, 15, e0235388.	2.5	19
147	Charting a course for genetic diversity in the UN Decade of Ocean Science. Evolutionary Applications, 2021, 14, 1497-1518.	3.1	19
148	Multilocus genetic analyses provide insight into speciation and hybridization in aquatic grasses, genus <i>Ruppia</i> . Biological Journal of the Linnean Society, 2016, 117, 177-191.	1.6	18
149	Cryptic diversity, geographical endemism and allopolyploidy in NE Pacific seaweeds. BMC Evolutionary Biology, 2017, 17, 30.	3.2	18
150	Genetic recolonization of mangrove: genetic diversity still increasing in the Mekong Delta 30 years after Agent Orange. Marine Ecology - Progress Series, 2009, 390, 129-135.	1.9	18
151	HABITAT DIFFERENCES IN THE TIMING OF REPRODUCTION OF THE INVASIVE ALGA <i>SARGASSUM MUTICUM</i> (PHAEOPHYTA, SARGASSACEAE) OVER TIDAL AND LUNAR CYCLES ¹ . Journal of Phycology, 2009, 45, 1-7.	2.3	17
152	The possible origin of Zostera noltii in the Canary Islands and guidelines for restoration. Marine Biology, 2010, 157, 2109-2115.	1.5	17
153	Looking into the black box: simulating the role of selfâ€fertilization and mortality in the genetic structure of <i>Macrocystis pyrifera</i> . Molecular Ecology, 2013, 22, 4842-4854.	3.9	17
154	Temporal windows of reproductive opportunity reinforce species barriers in a marine broadcast spawning assemblage. Scientific Reports, 2016, 6, 29198.	3.3	17
155	Do hatchery-reared sea urchins pose a threat to genetic diversity in wild populations?. Heredity, 2016, 116, 378-383.	2.6	17
156	The microbiome of the habitatâ€forming brown alga <i>Fucus vesiculosus</i> (Phaeophyceae) has similar crossâ€Atlantic structure that reflects past and present drivers ¹ . Journal of Phycology, 2021, 57, 1681-1698.	2.3	17
157	Microsatellite markers for the giant kelp Macrocystis pyrifera. Conservation Genetics, 2009, 10, 1915-1917.	1.5	16
158	Tradeâ€offs between lifeâ€history traits at rangeâ€edge and central locations. Journal of Phycology, 2015, 51, 808-818.	2.3	16
159	Behind the mask: cryptic genetic diversity of <i>Mytilus galloprovincialis</i> along southern European and northern African shores. Journal of Molluscan Studies, 2015, 81, 380-387.	1.2	16
160	Pan-Arctic population of the keystone copepod Calanus glacialis. Polar Biology, 2016, 39, 2311-2318.	1.2	16
161	Limited differences in fish and benthic communities and possible cascading effects inside and outside a protected marine area in Sagres (SW Portugal). Marine Environmental Research, 2016, 114, 12-23.	2.5	16
162	Regional Genetic Structure in the Aquatic Macrophyte Ruppia cirrhosa Suggests Dispersal by Waterbirds. Estuaries and Coasts, 2017, 40, 1705-1716.	2.2	16

#	Article	lF	CITATIONS
163	Mates Matter: Gametophyte Kinship Recognition and Inbreeding in the Giant Kelp, <i>Macrocystispyrifera</i> (Laminariales, Phaeophyceae). Journal of Phycology, 2021, 57, 711-725.	2.3	16
164	High Interannual Variability in Connectivity and Genetic Pool of a Temperate Clingfish Matches Oceanographic Transport Predictions. PLoS ONE, 2016, 11, e0165881.	2.5	16
165	Acidification increases abundances of <i>Vibrionales</i> and <i>Planctomycetia</i> associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency. PeerJ, 2018, 6, e4377.	2.0	16
166	Major Expansion of Marine Forests in a Warmer Arctic. Frontiers in Marine Science, 2022, 9, .	2.5	16
167	Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships. Helgolâ^šÂ§nder Meeresuntersuchungen, 1993, 47, 125-143.	0.2	15
168	Egg release and settlement patterns of dioecious and hermaphroditic fucoid algae during the tidal cycle. Marine Biology, 2008, 155, 583-591.	1.5	15
169	Polar marine biology science in Portugal and Spain: Recent advances and future perspectives. Journal of Sea Research, 2013, 83, 9-29.	1.6	15
170	The effect of mixotrophy in the ex situ culture of the soft coral Sarcophyton cf. glaucum. Aquaculture, 2016, 452, 151-159.	3.5	15
171	Postglacial expansion of the Arctic keystone copepod Calanus glacialis. Marine Biodiversity, 2018, 48, 1027-1035.	1.0	15
172	Sex-dependent and -independent transcriptional changes during haploid phase gametogenesis in the sugar kelp Saccharina latissima. PLoS ONE, 2019, 14, e0219723.	2.5	15
173	The genus Cystoseira s.l. (Ochrophyta, Fucales, Sargassaceae) in the Black Sea: morphological variability and molecular taxonomy of Congolaria barbata and endemic Ericaria crinita f. bosphorica comb. nov.<:/em><:/strong>:. Phytotaxa, 2021, 480, 1-21.	0.3	15
174	Sexual reproduction vs. clonal propagation in the recovery of a seagrass meadow after an extreme weather event. Scientia Marina, 2019, 83, 357.	0.6	15
175	Isolation and characterization of microsatellite markers for the seagrassCymodocea nodosa. Molecular Ecology Notes, 2003, 3, 397-399.	1.7	14
176	Genetic flow directionality and geographical segregation in a Cymodocea nodosa genetic diversity network. EPJ Data Science, 2012, 1, .	2.8	14
177	The role of disturbance in differential regulation of co-occurring brown algae species: Interactive effects of sediment deposition, abrasion and grazing on algae recruits. Journal of Experimental Marine Biology and Ecology, 2012, 422-423, 1-8.	1.5	14
178	Reproductive strategies and isolationâ€byâ€demography in a marine clonal plant along an eutrophication gradient. Molecular Ecology, 2014, 23, 5698-5711.	3.9	14
179	Biomares, a LIFE project to restore and manage the biodiversity of Prof. Luiz Saldanha Marine Park. Journal of Coastal Conservation, 2014, 18, 643-655.	1.6	14
180	Linking Ecology to Genetics to Better Understand Adaptation and Evolution: A Review in Marine Macrophytes. Frontiers in Marine Science, 2020, 7, .	2.5	14

#	Article	IF	CITATIONS
181	High Coral Bycatch in Bottom-Set Gillnet Coastal Fisheries Reveals Rich Coral Habitats in Southern Portugal. Frontiers in Marine Science, 2020, 7, .	2.5	14
182	The collapse of marine forests: drastic reduction in populations of the family Sargassaceae in Madeira Island (NE Atlantic). Regional Environmental Change, 2021, 21, 1.	2.9	14
183	eDNA metabarcoding for diet analyses of green sea turtles (Chelonia mydas). Marine Biology, 2022, 169, 1.	1.5	14
184	<i>Fucus cottonii</i> (Fucales, Phaeophyceae) is not a single genetic entity but a convergent salt-marsh morphotype with multiple independent origins. European Journal of Phycology, 2012, 47, 461-468.	2.0	13
185	First description of seagrass distribution and abundance in São Tomé and PrÃncipe. Aquatic Botany, 2017, 142, 48-52.	1.6	13
186	Genetic structure of amphi-Atlantic <i>Laminaria digitata</i> (Laminariales, Phaeophyceae) reveals a unique range-edge gene pool and suggests post-glacial colonization of the NW Atlantic. European Journal of Phycology, 2020, 55, 517-528.	2.0	13
187	Highly polymorphic microsatellite markers for the Mediterranean endemic fan mussel Pinna nobilis. Mediterranean Marine Science, 2015, 16, 31.	1.6	13
188	Warming Threatens to Propel the Expansion of the Exotic Seagrass Halophila stipulacea. Frontiers in Marine Science, 2021, 8, .	2.5	13
189	Fertilization Strategies. Ecological Studies, 2009, , 149-164.	1.2	12
190	Isolation of highly polymorphic microsatellite loci for a species with a large genome size: sharpâ€ribbed salamander (<i>Pleurodeles waltl</i>). Molecular Ecology Resources, 2009, 9, 425-428.	4.8	12
191	New highly polymorphic microsatellite markers for the aquatic angiosperm <i>Ruppia cirrhosa</i> reveal population diversity and differentiation. Genome, 2014, 57, 57-59.	2.0	12
192	Congruence between fine-scale genetic breaks and dispersal potential in an estuarine seaweed across multiple transition zones. ICES Journal of Marine Science, 2020, 77, 371-378.	2.5	12
193	Climateâ€induced range shifts shaped the present and threaten the future genetic variability of a marine brown alga in the Northwest Pacific. Evolutionary Applications, 2021, 14, 1867-1879.	3.1	12
194	Genetic signature of a recent invasion: The ragged sea hare Bursatella leachii in Mar Menor (SE Spain). Biochemical Systematics and Ecology, 2014, 54, 123-129.	1.3	11
195	Fineâ€scale genetic structure and flowering output of the seagrass <i>Enhalus acoroides</i> undergoing disturbance. Ecology and Evolution, 2019, 9, 5186-5195.	1.9	11
196	Increased evolutionary rates and conserved transcriptional response following allopolyploidization in brown algae. Evolution; International Journal of Organic Evolution, 2019, 73, 59-72.	2.3	11
197	Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea). Scientific Reports, 2020, 10, 19219.	3.3	11
198	THE EVOLUTION OF CICADA SONGS CONTRASTED WITH THE RELATIONSHIPS INFERRED FROM MITOCHONDRIAL DNA (INSECTA, HEMIPTERA). Bioacoustics, 2008, 18, 17-34.	1.7	10

#	Article	IF	CITATIONS
199	Reprint of "Seagrasses in Portugal: A most endangered marine habitatâ€: Aquatic Botany, 2014, 115, 3-13.	1.6	10
200	A transcriptome resource for the copepod Calanus glacialis across a range of culture temperatures. Marine Genomics, 2015, 23, 27-29.	1.1	10
201	Early life history of larvae and early juvenile Atlantic horse mackerel Trachurus trachurus off the Portuguese west coast. Fisheries Research, 2016, 183, 111-118.	1.7	10
202	How experimental physiology and ecological niche modelling can inform the management of marine bioinvasions?. Science of the Total Environment, 2020, 700, 134692.	8.0	10
203	Characterization and Comparison of Bacterial Communities of an Invasive and Two Native Caribbean Seagrass Species Sheds Light on the Possible Influence of the Microbiome on Invasive Mechanisms. Frontiers in Microbiology, 2021, 12, 653998.	3.5	10
204	Lack of fine-scale genetic structure and distant mating in natural populations of Fucus vesiculosus. Marine Ecology - Progress Series, 2016, 544, 131-142.	1.9	10
205	Genetic diversity increases with depth in red gorgonian populations of the Mediterranean Sea and the Atlantic Ocean. PeerJ, 2019, 7, e6794.	2.0	10
206	Highly polymorphic microsatellite markers for the short-snouted seahorse (HippocampusÅhippocampus), including markers from a closely related species the long-snouted seahorse (HippocampusÂguttulatus). Conservation Genetics Resources, 2009, 1, 93-96.	0.8	9
207	Genetic diversity and biogeographical patterns of Caulerpa prolifera across the Mediterranean and Mediterranean/Atlantic transition zone. Marine Biology, 2015, 162, 557-569.	1.5	9
208	Population dynamics of temperate kelp forests near their low-latitude limit. Aquatic Botany, 2017, 139, 8-18.	1.6	9
209	Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and North Atlantic Calanus finmarchicus with the longest crustacean non-coding regions. Scientific Reports, 2017, 7, 13702.	3.3	9
210	Gene pool and connectivity patterns of <i>Pinna nobilis</i> in the Balearic Islands (Spain, Western) Tj ETQq0 0 0 Marine and Freshwater Ecosystems, 2019, 29, 175-188.	rgBT /Ove 2.0	erlock 10 Tf 5 9
211	Potential Biodiversity Connectivity in the Network of Marine Protected Areas in Western Africa. Frontiers in Marine Science, 2021, 8, .	2.5	9
212	Ocean currents shape the genetic structure of a kelp in southwestern Africa. Journal of Biogeography, 2022, 49, 822-835.	3.0	9
213	Polymorphic microsatellite DNA markers in the mangrove tree Avicennia alba. Molecular Ecology Notes, 2003, 3, 544-546.	1.7	8
214	Genetic Divergence for the Amphibian Pleurodeles waltl in Southwest Portugal: Dispersal Barriers Shaping Geographic Patterns. Journal of Herpetology, 2014, 48, 38.	0.5	8
215	A transcriptome resource for Antarctic krill (Euphausia superba Dana) exposed to short-term stress. Marine Genomics, 2015, 23, 45-47.	1.1	8
216	First record of seagrass in Cape Verde, eastern Atlantic. Marine Biodiversity Records, 2016, 9, .	1.2	8

#	Article	IF	CITATIONS
217	Development and characterization of twelve microsatellite markers for Porphyra linearis Greville. Genetica, 2017, 145, 127-130.	1.1	8
218	The introduction of <i>Sargassum muticum</i> modifies epifaunal patterns in a Moroccan seagrass meadow. Marine Ecology, 2018, 39, e12507.	1.1	8
219	The Small Giant Clam, Tridacna maxima Exhibits Minimal Population Genetic Structure in the Red Sea and Genetic Differentiation From the Gulf of Aden. Frontiers in Marine Science, 2020, 7, .	2.5	8
220	Predicted regime shift in the seagrass ecosystem of the Gulf of Arguin driven by climate change. Global Ecology and Conservation, 2021, 32, e01890.	2.1	8
221	Highly polymorphic microsatellite loci for the Parsley frog (Pelodytes punctatus): characterization and testing for cross-species amplification. Conservation Genetics, 2009, 10, 665-668.	1.5	7
222	Contrasting timing of life stages across latitudes – a case study of a marine forest-forming species. European Journal of Phycology, 2015, 50, 361-369.	2.0	7
223	Reproductive strategies and population genetic structure of <i>Fucus spp</i> . across a northeast Atlantic biogeographic transition. Aquatic Living Resources, 2017, 30, 16.	1.2	7
224	Genetic diversity of a marine foundation species, <i>Laminaria hyperborea</i> (Gunnerus) Foslie, along the coast of Ireland. European Journal of Phycology, 2020, 55, 310-326.	2.0	7
225	Dinucleotide microsatellite markers in the genus Caulerpa. Journal of Applied Phycology, 2011, 23, 715-719.	2.8	6
226	Characterization of ten highly polymorphic microsatellite loci for the intertidal mussel Perna perna, and cross species amplification within the genus. BMC Research Notes, 2012, 5, 558.	1.4	6
227	Microsatellite markers developed through pyrosequencing allow clonal discrimination in the invasive alga Caulerpa taxifolia. Conservation Genetics Resources, 2013, 5, 667-669.	0.8	6
228	Genetic Evidence for Polygynandry in the Black-Striped Pipefish Syngnathus abaster: A Microsatellite-Based Parentage Analysis. Journal of Heredity, 2013, 104, 791-797.	2.4	6
229	Characterization of fifteen microsatellite markers for the kelp Laminaria ochroleuca and cross species amplification within the genus. Conservation Genetics Resources, 2014, 6, 949-950.	0.8	6
230	Novel polymorphic microsatellite loci for a new target species, the sea cucumber Holothuria mammata. Biochemical Systematics and Ecology, 2016, 66, 109-113.	1.3	6
231	First record of Ruppia maritima in West Africa supported by morphological description and phylogenetic classification. Botanica Marina, 2017, 60, .	1.2	6
232	Isolation and characterization of microsatellite markers for the red alga <i>Porphyra umbilicalis</i> . Plant Genetic Resources: Characterisation and Utilisation, 2018, 16, 390-393.	0.8	5
233	Small scale temporal patterns of recruitment and hatching of Atlantic horse mackerel (L.) at a nearshore reef area. Fisheries Oceanography, 2018, 27, 505-516.	1.7	5
234	Genomes Vary in Size and Spatial Patterns Within Chimeric Blades of Porphyra spp Frontiers in Marine Science, 2021, 8, .	2.5	5

#	Article	IF	CITATIONS
235	Similar Epiphytic Macrofauna Inhabiting the Introduced <i>Sargassum muticum</i> and Native Fucoids on the Atlantic Coast of Morocco. Cryptogamie, Algologie, 2018, 39, 269-292.	0.9	5
236	When is a hybrid a hybrid? A counter-reply to Wallace etÂal Molecular Ecology, 2006, 15, 3481-3482.	3.9	4
237	Development and characterization of 35 single nucleotide polymorphism markers for the brown alga <i>Fucus vesiculosus</i> . European Journal of Phycology, 2011, 46, 342-351.	2.0	4
238	Microsatellite markers for the Arctic copepod Calanus glacialis and cross-amplification with C. finmarchicus. Conservation Genetics Resources, 2014, 6, 1003-1005.	0.8	4
239	A population genetics toolbox for the threatened canopy-forming brown seaweeds Cystoseira tamariscifolia and C. amentacea (Fucales, Sargassaceae). Journal of Applied Phycology, 2017, 29, 627-629.	2.8	4
240	Individual-based genetic analyses support asexual hydrochory dispersal in Zostera noltei. PLoS ONE, 2018, 13, e0199275.	2.5	4
241	Genetic Affinities and Biogeography of Putative Levantine-Endemic Seaweed Treptacantha rayssiae (Ramon) M.Mulas, J.Neiva & Ãilsrael, comb. nov. (Phaeophyceae). Cryptogamie, Algologie, 2020, 41, .	0.9	4
242	Microscopic life stages of Arctic kelp differ in their resilience and reproductive output in response to Arctic seasonality. European Journal of Phycology, 0, , 1-15.	2.0	4
243	Evolutionary and Ecological Trees and Networks. AIP Conference Proceedings, 2007, , .	0.4	3
244	Development and characterization of highly polymorphic microsatellite loci for the Western Spadefoot toad, Pelobates cultripes. Conservation Genetics, 2009, 10, 993-996.	1.5	3
245	Ampelisca lusitanica (Crustacea: Amphipoda): new species for the Atlantic coast of Morocco. Marine Biodiversity Records, 2017, 10, .	1.2	3
246	Spatiotemporal variation of the epifaunal assemblages associated to Sargassum muticum on the NW Atlantic coast of Morocco. Environmental Science and Pollution Research, 2020, 27, 35501-35514.	5.3	3
247	Spatiotemporal patterns of phenology of the alien Phaeophyceae Sargassum muticum on the Atlantic coast of Morocco. Scientia Marina, 2021, 85, 103-111.	0.6	3
248	Seagrass Connectivity on the West Coast of Africa Supports the Hypothesis of Grazer-Mediated Seed Dispersal. Frontiers in Marine Science, 0, 9, .	2.5	3
249	Characterization of 15 polymorphic microsatellite loci in Rimicaris exoculata, and cross-amplification in other hydrothermal-vent shrimp. Conservation Genetics Resources, 2012, 4, 81-84.	0.8	2
250	Characterization of 15 polymorphic microsatellite loci in the temperate reef fish Lepadogaster lepadogaster, developed using 454-sequencing. Conservation Genetics Resources, 2013, 5, 55-57.	0.8	2
251	Polymorphic microsatellite markers in the brown seaweed Fucus vesiculosus. BMC Research Notes, 2015, 8, 73.	1.4	2
252	Reproductive investment, synchrony and recruitment success in marine broadcast spawners: Effects of mating system and habitat (exposed shore versus estuary). Marine Environmental Research, 2015, 112, 33-39.	2.5	2

#	Article	IF	CITATIONS
253	Larval development and allometric growth of the blackâ€faced blenny <i>Tripterygion delaisi</i> . Journal of Fish Biology, 2017, 90, 2239-2254.	1.6	2
254	High genetic differentiation of red gorgonian populations from the Atlantic Ocean and the Mediterranean Sea. Marine Biology Research, 2017, 13, 854-861.	0.7	2
255	The paranthurid isopod crustacean Paranthura nigropunctata (Lucas, 1846): first record from the Atlantic coast of Morocco. Acta Oceanologica Sinica, 2018, 37, 190-194.	1.0	2
256	Unraveling seaweeds bacteriomes. , 2018, , 95-113.		2
257	Development of tools to rapidly identify cryptic species and characterize their genetic diversity in different European kelp species. Journal of Applied Phycology, 2021, 33, 4169-4186.	2.8	2
258	Distribution and Genetic Structure of Fucus distichus Linnaeus 1953 (formerly F. gardneri) within Central San Francisco Bay. San Francisco Estuary and Watershed Science, 2017, 15, .	0.4	1
259	Phenotypic Plasticity in Sargassum Forests May Not Counteract Projected Biomass Losses Along a Broad Latitudinal Gradient. Ecosystems, 2023, 26, 29-41.	3.4	1
260	Biogeographic Population Structure of Chimeric Blades of Porphyra in the Northeast Atlantic Reveals Southern Rich Gene Pools, Introgression and Cryptic Plasticity. Frontiers in Plant Science, 2022, 13, 818368.	3.6	1
261	Phylogeographic Analysis Suggests a Recent Population Bottleneck in the Rare Red Sea Tridacna squamosina. Frontiers in Marine Science, 2021, 8, .	2.5	0
262	New Records of Fish Species from the Coast of Luanda, Angola. Thalassas, 2021, 37, 803-811.	0.5	0
263	Characterization of ten highly polymorphic microsatellite loci for the intertidal mussel Perna perna, and cross species amplification within the genus. BMC Research Notes, 2012, 5, 2101791285670501.	1.4	0
264	Microbial Surface Biofilm Responds to the Growth-Reproduction-Senescence Cycle of the Dominant Coral Reef Macroalgae Sargassum spp Life, 2021, 11, 1199.	2.4	0