Ting Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7811221/publications.pdf

Version: 2024-02-01

		236833	315616
76	1,962 citations	25	38
papers	citations	h-index	g-index
77	77	77	1549
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	ERF4 affects fruit ripening by acting as a JAZ interactor between ethylene and jasmonic acid hormone signaling pathways. Horticultural Plant Journal, 2022, 8, 689-699.	2.3	21
2	Ethylene response factor MdERF4 and histone deacetylase MdHDA19 suppress apple fruit ripening through histone deacetylation of ripening-related genes. Plant Physiology, 2022, 188, 2166-2181.	2.3	29
3	Phosphorylation of MdERF17 by MdMPK4 promotes apple fruit peel degreening during light/dark transitions. Plant Cell, 2022, 34, 1980-2000.	3.1	16
4	A long noncoding RNA functions in high-light-induced anthocyanin accumulation in apple by activating ethylene synthesis. Plant Physiology, 2022, 189, 66-83.	2.3	31
5	ROS1 promotes low temperature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes. Horticulture Research, 2022, 9, .	2.9	17
6	MdMADS6 Recruits Histone Deacetylase MdHDA19 to Repress the Expression of the Carotenoid Synthesis-Related Gene MdCCD1 during Fruit Ripening. Plants, 2022, 11, 668.	1.6	7
7	A bulked segregant analysis tool for out-crossing species (BSATOS) and QTL-based genomics-assisted prediction of complex traits in apple. Journal of Advanced Research, 2022, 42, 149-162.	4.4	6
8	Longâ€distance mobile mRNA <i>CAX3</i> modulates iron uptake and zinc compartmentalization. EMBO Reports, 2022, 23, e53698.	2.0	4
9	Siderophore production in <i>pseudomonas</i> SP. strain <scp>SP3</scp> enhances iron acquisition in apple rootstock. Journal of Applied Microbiology, 2022, , .	1.4	11
10	\hat{I}^3 -Aminobutyric Acid Participates in the Adult-Phase Adventitious Rooting Recalcitrance. Journal of Plant Growth Regulation, 2021, 40, 1981-1991.	2.8	7
11	Role of <i>MdERF3</i> and <i>MdERF118</i> natural variations in apple flesh firmness/crispness retainability and development of QTLâ€based genomicsâ€assisted prediction. Plant Biotechnology Journal, 2021, 19, 1022-1037.	4.1	24
12	Natural variations in a pectin acetylesterase gene, <i>MdPAE10</i> , contribute to prolonged apple fruit shelf life. Plant Genome, 2021, 14, e20084.	1.6	14
13	Root architecture characteristics of differing size-controlling rootstocks and the influence on the growth of â€~Red Fuji' apple trees. Scientia Horticulturae, 2021, 281, 109959.	1.7	4
14	Apple MPK4 mediates phosphorylation of MYB1 to enhance lightâ€induced anthocyanin accumulation. Plant Journal, 2021, 106, 1728-1745.	2.8	38
15	Group /S1 bZIP heterodimers regulate <i>MdIPT5b</i> to negatively modulate drought tolerance in apple species. Plant Journal, 2021, 107, 399-417.	2.8	24
16	An HDâ€ZIP transcription factor, <i>MxHB13</i> , integrates auxinâ€regulated and juvenilityâ€determined control of adventitious rooting in <i>Malus xiaojinensis</i> . Plant Journal, 2021, 107, 1663-1680.	2.8	16
17	The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. Plant Cell, 2021, 33, 3309-3330.	3.1	80
18	RBP differentiation contributes to selective transmissibility of <i>OPT3</i> mRNAs. Plant Physiology, 2021, 187, 1587-1604.	2.3	5

#	Article	IF	Citations
19	MxRop1-MxrbohD1 interaction mediates ROS signaling in response to iron deficiency in the woody plant Malus xiaojinensis. Plant Science, 2021, 313, 111071.	1.7	6
20	MxMPK6-2-bHLH104 interaction is involved in reactive oxygen species signaling in response to iron deficiency in apple rootstock. Journal of Experimental Botany, 2021, 72, 1919-1932.	2.4	24
21	Ethylene Response Factors MbERF4 and MbERF72 Suppress Iron Uptake in Woody Apple Plants by Modulating Rhizosphere pH. Plant and Cell Physiology, 2020, 61, 699-711.	1.5	23
22	Morphological and photosynthetic responses differ among eight apple scion-rootstock combinations. Scientia Horticulturae, 2020, 261, 108981.	1.7	21
23	Characterization of Fe deficiency induced RING finger family members in apple species. Plant Gene, 2020, 21, 100209.	1.4	0
24	Intricate genetic variation networks control the adventitious root growth angle in apple. BMC Genomics, 2020, 21, 852.	1.2	6
25	Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks. BMC Genomics, 2020, 21, 550.	1.2	17
26	Quantitative trait lociâ€based genomicsâ€assisted prediction for the degree of apple fruit cover color. Plant Genome, 2020, 13, e20047.	1.6	12
27	Application of genome-wide insertion/deletion markers on genetic structure analysis and identity signature of Malus accessions. BMC Plant Biology, 2020, 20, 540.	1.6	7
28	MicroRNA156 (miR156) Negatively Impacts Mg-Protoporphyrin IX (Mg-Proto IX) Biosynthesis and Its Plastid-Nucleus Retrograde Signaling in Apple. Plants, 2020, 9, 653.	1.6	5
29	<i>ERF4</i> affects fruit firmness through TPL4 by reducing ethylene production. Plant Journal, 2020, 103, 937-950.	2.8	51
30	REVEILLE Transcription Factors Contribute to the Nighttime Accumulation of Anthocyanins in †Red Zaosu†(Pyrus Bretschneideri Rehd.) Pear Fruit Skin. International Journal of Molecular Sciences, 2020, 21, 1634.	1.8	14
31	PbGA20ox2 Regulates Fruit Set and Induces Parthenocarpy by Enhancing GA4 Content. Frontiers in Plant Science, 2020, 11, 113.	1.7	26
32	Jasmonate and Ethylene-Regulated Ethylene Response Factor 22 Promotes Lanolin-Induced Anthocyanin Biosynthesis in †Zaosu' Pear (Pyrus bretschneideri Rehd.) Fruit. Biomolecules, 2020, 10, 278.	1.8	20
33	A long nonâ€coding apple RNA, MSTRG.85814.11, acts as a transcriptional enhancer of <i>SAUR32</i> and contributes to the Feâ€deficiency response. Plant Journal, 2020, 103, 53-67.	2.8	42
34	MdMYB8 is associated with flavonol biosynthesis via the activation of the MdFLS promoter in the fruits of Malus crabapple. Horticulture Research, 2020, 7, 19.	2.9	39
35	CPPU may induce gibberellin-independent parthenocarpy associated with PbRR9 in â€~Dangshansu' pear. Horticulture Research, 2020, 7, 68.	2.9	19
36	Natural variation in cytokinin maintenance improves salt tolerance in apple rootstocks. Plant, Cell and Environment, 2019, 42, 424-436.	2.8	32

#	Article	IF	Citations
37	MdGCT1 Impacts Apple miR156 Precursor Levels via Ontogenetic Changes in Subcellular Glutathione Homeostasis. Frontiers in Plant Science, 2019, 10, 994.	1.7	7
38	The infiltration efficiency of Agrobacterium-mediated transient transformation in four apple cultivars. Scientia Horticulturae, 2019, 256, 108597.	1.7	15
39	Systematic identification of long noncoding <scp>RNA</scp> s expressed during lightâ€induced anthocyanin accumulation in apple fruit. Plant Journal, 2019, 100, 572-590.	2.8	91
40	The Artificial Promoter rMdAG2I Confers Flower-specific Activity in Malus. International Journal of Molecular Sciences, 2019, 20, 4551.	1.8	3
41	Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS ONE, 2019, 14, e0210672.	1.1	34
42	Progress of Apple Rootstock Breeding and Its Use. Horticultural Plant Journal, 2019, 5, 183-191.	2.3	52
43	Mapping Gene Markers for Apple Fruit Ring Rot Disease Resistance Using a Multi-omics Approach. G3: Genes, Genomes, Genetics, 2019, 9, 1663-1678.	0.8	27
44	Downregulation of the auxin transporter gene SIPIN8 results in pollen abortion in tomato. Plant Molecular Biology, 2019, 99, 561-573.	2.0	20
45	The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit. BMC Plant Biology, 2019, 19, 85.	1.6	55
46	Genome-Wide Identification and Characterization of ABC Transporters in Nine Rosaceae Species Identifying MdABCG28 as a Possible Cytokinin Transporter linked to Dwarfing. International Journal of Molecular Sciences, 2019, 20, 5783.	1.8	21
47	Effects of Melatonin Treatment of Postharvest Pear Fruit on Aromatic Volatile Biosynthesis. Molecules, 2019, 24, 4233.	1.7	31
48	Relatively high acidity is an important breeding objective for fresh juice-specific apple cultivars. Scientia Horticulturae, 2018, 233, 29-37.	1.7	19
49	Natural Variation Underlies Differences in ETHYLENE RESPONSE FACTOR17 Activity in Fruit Peel Degreening. Plant Physiology, 2018, 176, 2292-2304.	2.3	47
50	MdPIN1b encodes a putative auxin efflux carrier and has different expression patterns in BC and M9 apple rootstocks. Plant Molecular Biology, 2018, 96, 353-365.	2.0	21
51	An ethylene response factor (MxERF4) functions as a repressor of Fe acquisition in Malus xiaojinensis. Scientific Reports, 2018, 8, 1068.	1.6	21
52	Functional characterisation of <i>MdMYB44</i> as a negative regulator in the response to cold and salt stress in apple calli. Journal of Horticultural Science and Biotechnology, 2018, 93, 347-355.	0.9	12
53	<i>At<scp>ROP</scp>6</i> is involved in reactive oxygen species signaling in response to ironâ€deficiency stress in <i>Arabidopsis thaliana</i> . FEBS Letters, 2018, 592, 3446-3459.	1.3	28
54	Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: <i>MdSAUR37</i> , <i>MdPP2CH</i> and <i>MdALMTII</i> Plant Journal, 2018, 95, 427-443.	2.8	71

#	Article	IF	CITATIONS
55	Root growth angle: An important trait that influences the deep rooting of apple rootstocks. Scientia Horticulturae, 2017, 216, 256-263.	1.7	9
56	Methylation effect on IPT5b gene expression determines cytokinin biosynthesis in apple rootstock. Biochemical and Biophysical Research Communications, 2017, 482, 604-609.	1.0	28
57	Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency. Biochemical and Biophysical Research Communications, 2017, 491, 862-868.	1.0	40
58	Development of high-density interspecific genetic maps for the identification of QTLs conferring resistance to Valsa ceratosperma in apple. Euphytica, 2017, 213, 1.	0.6	10
59	Candidate genes associated with resistance to Valsa canker identified via quantitative trait loci in apple. Journal of Phytopathology, 2017, 165, 848-857.	0.5	3
60	TATA Box Insertion Provides a Selection Mechanism Underpinning Adaptations to Fe Deficiency. Plant Physiology, 2017, 173, 715-727.	2.3	27
61	High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis. Frontiers in Plant Science, 2017, 8, 1059.	1.7	74
62	The ethylene response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis thaliana. PLoS ONE, 2017, 12, e0186580.	1.1	43
63	Reactive Oxygen Species Function to Mediate the Fe Deficiency Response in an Fe-Efficient Apple Genotype: An Early Response Mechanism for Enhancing Reactive Oxygen Production. Frontiers in Plant Science, 2016, 7, 1726.	1.7	34
64	Nitric oxide signaling is involved in the response to iron deficiency in the woody plant Malus xiaojinensis. Plant Physiology and Biochemistry, 2016, 109, 515-524.	2.8	19
65	A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics, 2015, 16, 747.	1.2	83
66	Iron deficiency stress can induce MxNRAMP1 protein endocytosis in M. xiaojinensis. Gene, 2015, 567, 225-234.	1.0	9
67	Candidate gene prediction via quantitative trait locus analysis of fruit shape index traits in apple. Euphytica, 2015, 206, 381-391.	0.6	12
68	Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (<i>Malus domestica</i>) Leaves. Plant and Cell Physiology, 2015, 56, 1748-1761.	1.5	29
69	Development of a dot blot macroarray and its use in gene expression marker-assisted selection for iron deficiency tolerant apple rootstocks. Euphytica, 2015, 202, 469-477.	0.6	2
70	Transcriptomic analysis demonstrates the early responses of local ethylene and redox signaling to low iron stress in Malus xiaojinensis. Tree Genetics and Genomes, 2014, 10, 573-584.	0.6	15
71	The lose of juvenility elicits adventitious rooting recalcitrance in apple rootstocks. Plant Cell, Tissue and Organ Culture, 2014, 119, 51-63.	1.2	31
72	Induction of root Fe(III) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. Journal of Experimental Botany, 2012, 63, 859-870.	2.4	84

#	Article	IF	CITATION
73	Cloning and Characterization of MxVHA-c, a Vacuolar H+-ATPase Subunit C Gene Related to Fe Efficiency from Malus xiaojinensis. Plant Molecular Biology Reporter, 2012, 30, 1149-1157.	1.0	11
74	Carbon Sequestration by Fruit Trees - Chinese Apple Orchards as an Example. PLoS ONE, 2012, 7, e38883.	1.1	48
75	Comparison of cadmium-induced iron-deficiency responses and genuine iron-deficiency responses in Malus xiaojinensis. Plant Science, 2011, 181, 269-274.	1.7	52
76	MdNRT2.4 interacts with rhizosphere bacteria to enhance nitrate uptake in apple rootstocks. Journal of Experimental Botany, 0, , .	2.4	6