
P V Vara Prasad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/781118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rising temperatures reduce global wheatÂproduction. Nature Climate Change, 2015, 5, 143-147.	8.1	1,544
2	Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 2006, 95, 398-411.	2.3	609
3	Temperature variability and the yield of annual crops. Agriculture, Ecosystems and Environment, 2000, 82, 159-167.	2.5	506
4	Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 2018, 1, 441-446.	11.5	416
5	Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 2010, 48, 999-1007.	2.8	387
6	Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Frontiers in Plant Science, 2018, 9, 1705.	1.7	371
7	Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology, 2006, 139, 237-251.	1.9	362
8	Independent and Combined Effects of High Temperature and Drought Stress During Grain Filling on Plant Yield and Chloroplast EF-Tu Expression in Spring Wheat. Journal of Agronomy and Crop Science, 2011, 197, 430-441.	1.7	360
9	Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016, 6, 1130-1136.	8.1	352
10	Field crops and the fear of heat stress—Opportunities, challenges and future directions. Field Crops Research, 2017, 200, 114-121.	2.3	290
11	Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability, 2021, 13, 9963.	1.6	247
12	Sensitivity of Grain Sorghum to High Temperature Stress during Reproductive Development. Crop Science, 2008, 48, 1911-1917.	0.8	239
13	Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus) Tj ETQq1 1	0.784314 4.2	∙rgBT_/Overlo 237
14	Impact of Nighttime Temperature on Physiology and Growth of Spring Wheat. Crop Science, 2008, 48, 2372-2380.	0.8	234
15	Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Functional Plant Biology, 2014, 41, 1261.	1.1	231
16	Role of Cytochrome P450 Enzymes in Plant Stress Response. Antioxidants, 2020, 9, 454.	2.2	218
17	Differences in in vitro Pollen Germination and Pollen Tube Growth of Cotton Cultivars in Response to High Temperature. Annals of Botany, 2005, 96, 59-67.	1.4	214
18	Effects of drought and high temperature stress on synthetic hexaploid wheat. Functional Plant Biology, 2012, 39, 190.	1.1	214

#	Article	IF	CITATIONS
19	Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agricultural and Forest Meteorology, 2020, 284, 107886.	1.9	198
20	Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant, Cell and Environment, 2016, 39, 787-803.	2.8	197
21	Fruit Number in Relation to Pollen Production and Viability in Groundnut Exposed to Short Episodes of Heat Stress. Annals of Botany, 1999, 84, 381-386.	1.4	183
22	Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biology, 2003, 9, 1775-1787.	4.2	179
23	Correlation between Heat Stability of Thylakoid Membranes and Loss of Chlorophyll in Winter Wheat under Heat Stress. Crop Science, 2007, 47, 2067-2073.	0.8	178
24	Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant, Cell and Environment, 2002, 25, 1651-1661.	2.8	169
25	Influence of High Temperature and Breeding for Heat Tolerance in Cotton: A Review. Advances in Agronomy, 2007, 93, 313-385.	2.4	167
26	Impacts of Drought and/or Heat Stress on Physiological, Developmental, Growth, and Yield Processes of Crop Plants. Advances in Agricultural Systems Modeling, 0, , 301-355.	0.3	167
27	Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta, 2007, 227, 67-79.	1.6	157
28	High-Temperature Stress Alleviation by Selenium Nanoparticle Treatment in Grain Sorghum. ACS Omega, 2018, 3, 2479-2491.	1.6	156
29	Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry, 2017, 115, 57-72.	2.8	146
30	Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. Frontiers in Plant Science, 2017, 8, 1658.	1.7	146
31	Genetic variability of transpiration response to vapor pressure deficit among sorghum genotypes. Field Crops Research, 2010, 119, 85-90.	2.3	144
32	Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds for temperature and duration. Frontiers in Plant Science, 2015, 6, 820.	1.7	142
33	Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biology, 2018, 18, 55.	1.6	136
34	Yield Responses to Planting Density for US Modern Corn Hybrids: A Synthesisâ€Analysis. Crop Science, 2016, 56, 2802-2817.	0.8	135
35	Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivumL.). BMC Genetics, 2014, 15, 97.	2.7	133
36	High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Functional Plant Biology, 2011, 38, 993.	1.1	125

#	Article	IF	CITATIONS
37	Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 2022, 4, 1.	6.2	121
38	Sensitivity of sorghum pollen and pistil to highâ€ŧemperature stress. Plant, Cell and Environment, 2018, 41, 1065-1082.	2.8	120
39	Impact of Climate Change Factors on Weeds and Herbicide Efficacy. Advances in Agronomy, 2016, , 107-146.	2.4	116
40	Sensitivity of Peanut to Timing of Heat Stress during Reproductive Development. Crop Science, 1999, 39, 1352-1357.	0.8	115
41	Cerium Oxide Nanoparticles Decrease Drought-Induced Oxidative Damage in Sorghum Leading to Higher Photosynthesis and Grain Yield. ACS Omega, 2018, 3, 14406-14416.	1.6	115
42	Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biology, 2020, 20, 268.	1.6	112
43	An integrated approach to maintaining cereal productivity under climate change. Clobal Food Security, 2016, 8, 9-18.	4.0	110
44	Agronomic and Physiological Responses to High Temperature, Drought, and Elevated CO2 Interactions in Cereals. Advances in Agronomy, 2014, 127, 111-156.	2.4	108
45	Approaches to improve soil fertility in sub-Saharan Africa. Journal of Experimental Botany, 2020, 71, 632-641.	2.4	105
46	Variability of Root Traits in Spring Wheat Germplasm. PLoS ONE, 2014, 9, e100317.	1.1	103
47	Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environmental and Experimental Botany, 2014, 100, 43-54.	2.0	101
48	Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. Journal of Plant Physiology, 2008, 165, 192-202.	1.6	99
49	Seed treatment with nanoâ€iron (<scp>III</scp>) oxide enhances germination, seeding growth and salinity tolerance of sorghum. Journal of Agronomy and Crop Science, 2018, 204, 577-587.	1.7	99
50	Soybean Pollen Anatomy, Viability and Pod Set under High Temperature Stress. Journal of Agronomy and Crop Science, 2013, 199, 171-177.	1.7	97
51	Stomatal responses to changes in vapor pressure deficit reflect tissueâ€ s pecific differences in hydraulic conductance. Plant, Cell and Environment, 2014, 37, 132-139.	2.8	97
52	Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica, 2012, 186, 265-276.	0.6	95
53	Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environmental and Experimental Botany, 2011, 71, 215-223.	2.0	94
54	High Temperature Tolerance in <i>Aegilops</i> Species and Its Potential Transfer to Wheat. Crop Science, 2012, 52, 292-304.	0.8	94

#	Article	IF	CITATIONS
55	INFLUENCE OF INTEGRATED USE OF FARMYARD MANURE AND INORGANIC FERTILIZERS ON YIELD AND YIELD COMPONENTS OF IRRIGATED LOWLAND RICE. Journal of Plant Nutrition, 2002, 25, 2081-2090.	0.9	93
56	Influence of Growth Temperature on the Amounts of Tocopherols, Tocotrienols, and γ-Oryzanol in Brown Rice. Journal of Agricultural and Food Chemistry, 2007, 55, 7559-7565.	2.4	93
57	Characterization of sorghum genotypes for traits related to drought tolerance. Field Crops Research, 2011, 123, 10-18.	2.3	91
58	Quantifying the Impact of Heat Stress on Pollen Germination, Seed Set, and Grain Filling in Spring Wheat. Crop Science, 2019, 59, 684-696.	0.8	91
59	Implications of High Temperature and Elevated CO2 on Flowering Time in Plants. Frontiers in Plant Science, 2016, 7, 913.	1.7	89
60	Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theoretical and Applied Genetics, 2019, 132, 1607-1638.	1.8	89
61	Ethylene production under high temperature stress causes premature leaf senescence in soybean. Functional Plant Biology, 2010, 37, 1071.	1.1	88
62	Production of biofuels from sorghum. Renewable and Sustainable Energy Reviews, 2020, 124, 109769.	8.2	88
63	Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (<scp><i>Lens) Tj ETQq1 1 0.784314 rgB 2019, 42, 198-211.</i></scp>	T /Oyerlo	ck
64	Impact of High Nightâ€īime and High Daytime Temperature Stress on Winter Wheat. Journal of Agronomy and Crop Science, 2015, 201, 206-218.	1.7	82
65	Major Management Factors Determining Spring and Winter Canola Yield in North America. Crop Science, 2018, 58, 1-16.	0.8	82
66	Rubisco activase and wheat productivity under heat-stress conditions. Journal of Experimental Botany, 2009, 60, 4003-4014.	2.4	81
67	Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant, Cell and Environment, 2018, 41, 993-1007.	2.8	79
68	Crop science experiments designed to inform crop modeling. Agricultural and Forest Meteorology, 2013, 170, 8-18.	1.9	78
69	Heat Stress during Flowering Affects Time of Day of Flowering, Seed Set, and Grain Quality in Spring Wheat. Crop Science, 2018, 58, 380-392.	0.8	77
70	Effect of Physical Characteristics and Hydrodynamic Conditions on Transport and Deposition of Microplastics in Riverine Ecosystem. Water (Switzerland), 2021, 13, 2710.	1.2	76
71	Phenotypic Plasticity of Winter Wheat Heading Date and Grain Yield across the US Great Plains. Crop Science, 2016, 56, 2223-2236.	0.8	75
72	QTL Mapping for Grain Yield, Flowering Time, and Stayâ€Green Traits in Sorghum with Genotypingâ€byâ€Sequencing Markers. Crop Science, 2016, 56, 1429-1442.	0.8	73

#	Article	IF	CITATIONS
73	Title is missing!. Plant and Soil, 2000, 222, 231-239.	1.8	72
74	Alterations in wheat pollen lipidome during high day and night temperature stress. Plant, Cell and Environment, 2018, 41, 1749-1761.	2.8	72
75	Physiological and Molecular Mechanisms of Differential Sensitivity of Palmer Amaranth (Amaranthus) Tj ETQq1	1 0.784314 1.1	rgBT /Overlo
76	Impacts of Changing Climate and Climate Variability on Seed Production and Seed Industry. Advances in Agronomy, 2013, , 49-110.	2.4	71
77	High Day―or Nighttime Temperature Alters Leaf Assimilation, Reproductive Success, and Phosphatidic Acid of Pollen Grain in Soybean [<i>Glycine max</i> (L.) Merr.]. Crop Science, 2013, 53, 1594-1604.	0.8	71
78	Crop Responses to Elevated Carbon Dioxide and Interaction with Temperature. Journal of Crop Improvement, 2005, 13, 113-155.	0.9	68
79	Quantifying potential benefits of drought and heat tolerance in rainy season sorghum for adapting to climate change. Agricultural and Forest Meteorology, 2014, 185, 37-48.	1.9	68
80	Wheat leaf lipids during heat stress: II. Lipids experiencing coordinated metabolism are detected by analysis of lipid coâ€occurrence. Plant, Cell and Environment, 2016, 39, 608-617.	2.8	67
81	Heat tolerance in groundnut. Field Crops Research, 2003, 80, 63-77.	2.3	66
82	A safety vs efficiency tradeâ€off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation. New Phytologist, 2016, 210, 97-107.	3.5	65
83	Winter Wheat Yield Response to Plant Density as a Function of Yield Environment and Tillering Potential: A Review and Field Studies. Frontiers in Plant Science, 2020, 11, 54.	1.7	65
84	Highâ€Temperature Stress and Soybean Leaves: Leaf Anatomy and Photosynthesis. Crop Science, 2011, 51, 2125-2131.	0.8	63
85	Diurnal temperature amplitude alters physiological and growth response of maize (Zea mays L.) during the vegetative stage. Environmental and Experimental Botany, 2016, 130, 113-121.	2.0	63
86	Drought, pod yield, pre-harvest Aspergillus infection and aflatoxin contamination on peanut in Niger. Field Crops Research, 2006, 98, 20-29.	2.3	62
87	High night temperature effects on wheat and rice: Current status and way forward. Plant, Cell and Environment, 2021, 44, 2049-2065.	2.8	61
88	Roles of Protein Synthesis Elongation Factor EF-Tu in Heat Tolerance in Plants. Journal of Botany, 2012, 2012, 1-8.	1.2	59
89	Resilience of Pollen and Postâ€Flowering Response in Diverse Sorghum Genotypes Exposed to Heat Stress under Field Conditions. Crop Science, 2017, 57, 1658-1669.	0.8	59
90	Changes in stomatal conductance along grass blades reflect changes in leaf structure. Plant, Cell and Environment, 2012, 35, 1040-1049.	2.8	58

#	Article	IF	CITATIONS
91	Evaluation of water-limited cropping systems in a semi-arid climate using DSSAT-CSM. Agricultural Systems, 2017, 150, 86-98.	3.2	58
92	Cover Crops, Fertilizer Nitrogen Rates, and Economic Return of Grain Sorghum. Agronomy Journal, 2016, 108, 1-16.	0.9	56
93	Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plant Biology, 2020, 20, 185.	1.6	56
94	Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. International Journal of Molecular Sciences, 2022, 23, 2838.	1.8	55
95	Identification and Characterization of Contrasting Genotypes/Cultivars for Developing Heat Tolerance in Agricultural Crops: Current Status and Prospects. Frontiers in Plant Science, 2020, 11, 587264.	1.7	54
96	Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance. SpringerPlus, 2013, 2, 650.	1.2	52
97	Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning Techniques. Remote Sensing, 2018, 10, 343.	1.8	51
98	Maximizing yields in rice–groundnut cropping sequence through integrated nutrient management. Field Crops Research, 2002, 75, 9-21.	2.3	50
99	Influence of high temperature during pre- and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Functional Plant Biology, 2001, 28, 233.	1.1	47
100	Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Functional Plant Biology, 2009, 36, 761.	1.1	47
101	Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana. Frontiers in Plant Science, 2017, 8, 996.	1.7	47
102	Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. European Journal of Agronomy, 2018, 100, 99-109.	1.9	47
103	Modelling predicts that soybean is poised to dominate crop production across <scp>A</scp> frica. Plant, Cell and Environment, 2019, 42, 373-385.	2.8	47
104	Modern Processing of Indian Millets: A Perspective on Changes in Nutritional Properties. Foods, 2022, 11, 499.	1.9	47
105	Seed Composition, Seedling Emergence and Early Seedling Vigour of Red Kidney Bean Seed Produced at Elevated Temperature and Carbon Dioxide. Journal of Agronomy and Crop Science, 2009, 195, 148-156.	1.7	46
106	Genotypic variation within sorghum for transpiration response to drying soil. Plant and Soil, 2012, 357, 35-40.	1.8	46
107	Smallholder farmer perceptions about the impact of COVID-19 on agriculture and livelihoods in Senegal. Agricultural Systems, 2021, 190, 103108.	3.2	46
108	Dry Matter Production and Rate of Change of Harvest Index at High Temperature in Peanut. Crop Science, 2002, 42, 146-151.	0.8	45

#	Article	IF	CITATIONS
109	DORMANCY IN YAMS. Experimental Agriculture, 2001, 37, 147-181.	0.4	44
110	Influence of Soil Temperature on Seedling Emergence and Early Growth of Peanut Cultivars in Field Conditions. Journal of Agronomy and Crop Science, 2006, 192, 168-177.	1.7	44
111	Longevity and temperature response of pollen as affected by elevated growth temperature and carbon dioxide in peanut and grain sorghum. Environmental and Experimental Botany, 2011, 70, 51-57.	2.0	44
112	Predicting Soybean Relative Maturity and Seed Yield Using Canopy Reflectance. Crop Science, 2016, 56, 625-643.	0.8	44
113	Water and Radiation Use Efficiencies in Sorghum. Agronomy Journal, 2013, 105, 649-656.	0.9	43
114	Effects of sowing date and fungicide application on yield of early and late maturing peanut cultivars grown under rainfed conditions in Ghana. Crop Protection, 2005, 24, 325-332.	1.0	42
115	Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): Comparative analysis of global accessions and Senegalese landraces. BMC Genomics, 2015, 16, 1048.	1.2	41
116	Evaluating the impact of future climate change on irrigated maize production in Kansas. Climate Risk Management, 2017, 17, 139-154.	1.6	41
117	Response and resilience of Asian agrifood systems to COVID-19: An assessment across twenty-five countries and four regional farming and food systems. Agricultural Systems, 2021, 193, 103168.	3.2	41
118	Crop Responses to Elevated Carbon Dioxide and Interactions with Temperature. Journal of Crop Improvement, 2005, 13, 157-191.	0.9	40
119	Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. International Journal of Molecular Sciences, 2021, 22, 9826.	1.8	39
120	Association mapping of germinability and seedling vigor in sorghum under controlled low-temperature conditions. Genome, 2016, 59, 137-145.	0.9	38
121	Root length and root lipid composition contribute to drought tolerance of winter and spring wheat. Plant and Soil, 2019, 439, 57-73.	1.8	38
122	Has Omicron Changed the Evolution of the Pandemic?. JMIR Public Health and Surveillance, 2022, 8, e35763.	1.2	38
123	The carbohydrate metabolism enzymes sucrose-P synthase and ADG-pyrophosphorylase in phaseolus bean leaves are up-regulated at elevated growth carbon dioxide and temperature. Plant Science, 2004, 166, 1565-1573.	1.7	37
124	Heat tolerance and expression of protein synthesis elongation factors, EF-Tu and EF-1α, in spring wheat. Functional Plant Biology, 2009, 36, 234.	1.1	36
125	Investigating the influence of roughness length for heat transport (zoh) on the performance of SEBAL in semi-arid irrigated and dryland agricultural systems. Journal of Hydrology, 2014, 509, 231-244.	2.3	36
126	Assessment of the growth in social groups for sustainable agriculture and land management. Global Sustainability, 2020, 3, .	1.6	36

#	Article	IF	CITATIONS
127	Plant growth-regulating molecules as thermoprotectants: functional relevance and prospects for improving heat tolerance in food crops. Journal of Experimental Botany, 2020, 71, 569-594.	2.4	35
128	Teff (<i>Eragrostis tef</i>) processing, utilization and future opportunities: a review. International Journal of Food Science and Technology, 2021, 56, 3125-3137.	1.3	35
129	Lysimetric evaluation of SEBAL using high resolution airborne imagery from BEAREX08. Advances in Water Resources, 2013, 59, 157-168.	1.7	33
130	Response of Maize to Cover Crops, Fertilizer Nitrogen Rates, and Economic Return. Agronomy Journal, 2016, 108, 17-31.	0.9	33
131	Reproductive success of soybean (<scp><i>Glycine max</i></scp> L. Merril) cultivars and exotic lines under high daytime temperature. Plant, Cell and Environment, 2019, 42, 321-336.	2.8	33
132	Evaluation of Wheat Chromosome Translocation Lines for High Temperature Stress Tolerance at Grain Filling Stage. PLoS ONE, 2015, 10, e0116620.	1.1	32
133	Crop diversification in rice-based systems in the polders of Bangladesh: Yield stability, profitability, and associated risk. Agricultural Systems, 2021, 187, 102986.	3.2	32
134	ls the Stayâ€Green Trait in Sorghum a Result of Transpiration Sensitivity to Either Soil Drying or Vapor Pressure Deficit?. Crop Science, 2013, 53, 2129-2134.	0.8	31
135	A New Insight into Corn Yield:Trends from 1987 through 2015. Crop Science, 2017, 57, 2799-2811.	0.8	31
136	Differences in in vitro pollen germination and pollen tube growth of coconut (Cocos nucifera L.) cultivars in response to high temperature stress. Environmental and Experimental Botany, 2018, 153, 35-44.	2.0	31
137	Response of Aegilops species to drought stress during reproductive stages of development. Functional Plant Biology, 2012, 39, 51.	1.1	30
138	Exploring Nitrogen Limitation for Historical and Modern Soybean Genotypes. Agronomy Journal, 2018, 110, 2080-2090.	0.9	30
139	Genomeâ€wide Association Study of Agronomic Traits in a Springâ€Planted North American Elite Hard Red Spring Wheat Panel. Crop Science, 2018, 58, 1838-1852.	0.8	29
140	A systems-level yield gap assessment of maize-soybean rotation under high- and low-management inputs in the Western US Corn Belt using APSIM. Agricultural Systems, 2019, 174, 145-154.	3.2	29
141	Nitrophenolates spray can alter boll abscission rate in cotton through enhanced peroxidase activity and increased ascorbate and phenolics levels. Journal of Plant Physiology, 2010, 167, 1-9.	1.6	28
142	Influence of Nitrogen Fertilizer on Growth and Yield of Grain Sorghum Hybrids and Inbred Lines. Agronomy Journal, 2014, 106, 1623-1630.	0.9	28
143	Natural variation in the regulation of leaf senescence and relation to N and root traits in wheat. Plant and Soil, 2014, 378, 99-112.	1.8	28
144	Projecting potential impact of COVID-19 on major cereal crops in Senegal and Burkina Faso using crop simulation models. Agricultural Systems, 2021, 190, 103107.	3.2	28

#	Article	IF	CITATIONS
145	Dry Matter Production and Rate of Change of Harvest Index at High Temperature in Peanut. Crop Science, 2002, 42, 146.	0.8	28
146	PhenologyMMS: A program to simulate crop phenological responses to water stress. Computers and Electronics in Agriculture, 2011, 77, 118-125.	3.7	27
147	Sweet Sorghum Planting Effects on Stalk Yield and Sugar Quality in Semiâ€Arid Tropical Environment. Agronomy Journal, 2013, 105, 1458-1465.	0.9	27
148	Optimizing preplant irrigation for maize under limited water in the High Plains. Agricultural Water Management, 2017, 187, 154-163.	2.4	27
149	Evaluation of drought and heat stressed grain sorghum (Sorghum bicolor) for ethanol production. Industrial Crops and Products, 2011, 33, 779-782.	2.5	26
150	Hydraulic conductance of intact plants of two contrasting sorghum lines, SC15 and SC1205. Functional Plant Biology, 2013, 40, 730.	1.1	26
151	Characterization of a Spring Wheat Association Mapping Panel for Root Traits. Agronomy Journal, 2014, 106, 1593-1604.	0.9	26
152	Soybean Nitrogen Sources and Demand During the Seedâ€Filling Period. Agronomy Journal, 2019, 111, 1779-1787.	0.9	26
153	Spatio-temporal evaluation of plant height in corn via unmanned aerial systems. Journal of Applied Remote Sensing, 2017, 11, 1.	0.6	26
154	The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. International Journal of Molecular Sciences, 2021, 22, 12970.	1.8	26
155	Big bluestem as a bioenergy crop: A review. Renewable and Sustainable Energy Reviews, 2015, 52, 740-756.	8.2	25
156	Economic value and water productivity of major irrigated crops in the Ogallala aquifer region. Agricultural Water Management, 2019, 214, 55-63.	2.4	25
157	â€~Omics' approaches in developing combined drought and heat tolerance in food crops. Plant Cell Reports, 2022, 41, 699-739.	2.8	25
158	Testing Effects of Climate Change in Crop Models. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2010, , 109-129.	0.4	24
159	Thresholds, sensitive stages and genetic variability of finger millet to high temperature stress. Journal of Agronomy and Crop Science, 2018, 204, 477-492.	1.7	24
160	Grain sorghum production functions under different irrigation capacities. Agricultural Water Management, 2018, 203, 261-271.	2.4	24
161	Response of Tomato Genotypes under Different High Temperatures in Field and Greenhouse Conditions. Plants, 2021, 10, 449.	1.6	24
162	Effective Use of Water in Crop Plants in Dryland Agriculture: Implications of Reactive Oxygen Species and Antioxidative System. Frontiers in Plant Science, 2021, 12, 778270.	1.7	24

#	Article	IF	CITATIONS
163	Corn Yield Response to Plant Density and Nitrogen: Spatial Models and Yield Distribution. Agronomy Journal, 2018, 110, 970-982.	0.9	23
164	Effect of elevated CO2, high temperature, and water deficit on growth, photosynthesis, and whole plant water use efficiency of cocoa (TheobromaÂcacao L.). International Journal of Biometeorology, 2020, 64, 47-57.	1.3	23
165	Evaluating Optimum Limited Irrigation Management Strategies for Corn Production in the Ogallala Aquifer Region. Journal of Irrigation and Drainage Engineering - ASCE, 2017, 143, 04017041.	0.6	22
166	Escape and tolerance to high temperature at flowering in groundnut (Arachis hypogaea L.). Journal of Agricultural Science, 2000, 135, 371-378.	0.6	21
167	Stalk rot fungi affect grain sorghum yield components in an inoculation stage-specific manner. Crop Protection, 2017, 94, 97-105.	1.0	21
168	Reproductive fitness in common bean (Phaseolus vulgaris L.) under drought stress is associated with root length and volume. Indian Journal of Plant Physiology, 2018, 23, 796-809.	0.8	21
169	Alien chromosome segment from Aegilops speltoides and Dasypyrum villosum increases drought tolerance in wheat via profuse and deep root system. BMC Plant Biology, 2019, 19, 242.	1.6	21
170	Modeling irrigation and nitrogen management of wheat in northern Ethiopia. Agricultural Water Management, 2019, 216, 264-272.	2.4	21
171	Land Use and Land Cover Changes and Its Impact on Soil Erosion in Stung Sangkae Catchment of Cambodia. Sustainability, 2021, 13, 9276.	1.6	21
172	Global Warming Effects. , 2017, , 289-299.		20
173	Using crop simulation model to evaluate influence of water management practices and multiple cropping systems on crop yields: A case study for Ethiopian highlands. Field Crops Research, 2021, 260, 108004.	2.3	20
174	Genetic Dissection of Seedling Root System Architectural Traits in a Diverse Panel of Hexaploid Wheat through Multi-Locus Genome-Wide Association Mapping for Improving Drought Tolerance. International Journal of Molecular Sciences, 2021, 22, 7188.	1.8	20
175	Effects of Salinity on Ion Transport, Water Relations and Oxidative Damage. , 2013, , 89-114.		19
176	Persistence of limited-transpiration-rate trait in sorghum at high temperature. Environmental and Experimental Botany, 2015, 115, 58-62.	2.0	19
177	Changes in Physiological Traits in Soybean with Breeding Advancements. Crop Science, 2016, 56, 122-131.	0.8	19
178	Organic and Inorganic Fertilizer Effects on the Growth and Yield of Maize in a Dry Agro-Ecology in Northern Ghana. Journal of Crop Improvement, 2016, 30, 1-16.	0.9	19
179	Co-addition of humic substances and humic acids with urea enhances foliar nitrogen use efficiency in sugarcane (Saccharum officinarum L.). Heliyon, 2020, 6, e05100.	1.4	19
180	A Model for Prediction of Heat Stability of Photosynthetic Membranes. Crop Science, 2008, 48, 1513-1522.	0.8	18

#	Article	IF	CITATIONS
181	Setting research priorities for tackling climate change. Journal of Experimental Botany, 2020, 71, 480-489.	2.4	18
182	Dynamics of oil and fatty acid accumulation during seed development in historical soybean varieties. Field Crops Research, 2020, 248, 107719.	2.3	18
183	Potential impacts of climate change factors and agronomic adaptation strategies on wheat yields in central highlands of Ethiopia. Climatic Change, 2020, 159, 461-479.	1.7	18
184	Narrowing Diurnal Temperature Amplitude Alters Carbon Tradeoff and Reduces Growth in C4 Crop Sorghum. Frontiers in Plant Science, 2020, 11, 1262.	1.7	17
185	Molecular breeding approaches involving physiological and reproductive traits for heat tolerance in food crops. Indian Journal of Plant Physiology, 2018, 23, 697-720.	0.8	16
186	Conservation Agriculture and Integrated Pest Management Practices Improve Yield and Income while Reducing Labor, Pests, Diseases and Chemical Pesticide Use in Smallholder Vegetable Farms in Nepal. Sustainability, 2020, 12, 6418.	1.6	16
187	Spatial analysis of the impact of climate change factors and adaptation strategies on productivity of wheat in Ethiopia. Science of the Total Environment, 2020, 731, 139094.	3.9	16
188	Reduction of Nitrogen Fertilizer Requirements and Nitrous Oxide Emissions Using Legume Cover Crops in a No-Tillage Sorghum Production System. Sustainability, 2020, 12, 4403.	1.6	16
189	Unraveling uncertainty drivers of the maize yield response to nitrogen: A Bayesian and machine learning approach. Agricultural and Forest Meteorology, 2021, 311, 108668.	1.9	16
190	Physiological and Molecular Approaches for Developing Thermotolerance in Vegetable Crops: A Growth, Yield and Sustenance Perspective. Frontiers in Plant Science, 0, 13, .	1.7	16
191	Partitioning hydraulic resistance in Sorghum bicolor leaves reveals unique correlations with stomatal conductance during drought. Functional Plant Biology, 2014, 41, 25.	1.1	15
192	Comparison of big bluestem with other native grasses: Chemical composition and biofuel yield. Energy, 2015, 83, 358-365.	4.5	15
193	A Review of Soybean Yield when Doubleâ€Cropped after Wheat. Agronomy Journal, 2019, 111, 677-685.	0.9	15
194	Large-Scale Non-Targeted Metabolomics Reveals Antioxidant, Nutraceutical and Therapeutic Potentials of Sorghum. Antioxidants, 2021, 10, 1511.	2.2	15
195	Crop Responses to Elevated Carbon Dioxide. , 2004, , 346-348.		15
196	GROUNDNUT YIELD RESPONSE AND ECONOMIC BENEFITS OF FUNGICIDE AND PHOSPHORUS APPLICATION IN FARMER-MANAGED TRIALS IN NORTHERN GHANA. Experimental Agriculture, 2009, 45, 385-399.	0.4	14
197	Simulating Crop Phenological Responses to Water Stress Using the PhenologyMMS Software Program. Applied Engineering in Agriculture, 2013, 29, 233-249.	0.3	14
198	Historical Synthesis-Analysis of Changes in Grain Nitrogen Dynamics in Sorghum. Frontiers in Plant Science, 2016, 7, 275.	1.7	14

#	Article	IF	CITATIONS
199	Yield and Water Productivity of Winter Wheat under Various Irrigation Capacities. Journal of the American Water Resources Association, 2019, 55, 24-37.	1.0	14
200	Drought and High Temperature Stress and Traits Associated with Tolerance. Agronomy, 0, , 241-265.	0.2	14
201	Genotype × Environment × Management Interactions: US Sorghum Cropping Systems. Agronomy, 0, , 277-296.	0.2	14
202	Differential heat sensitivity of two coolâ€season legumes, chickpea and lentil, at the reproductive stage, is associated with responses in pollen function, photosynthetic ability and oxidative damage. Journal of Agronomy and Crop Science, 2020, 206, 734-758.	1.7	14
203	A Comparison of Approaches to Regional Land-Use Capability Analysis for Agricultural Land-Planning. Land, 2021, 10, 458.	1.2	14
204	Impacts of the COVIDâ€19 pandemic on vegetable production systems and livelihoods: Smallholder farmer experiences in Burkina Faso. Food and Energy Security, 2022, 11, e337.	2.0	14
205	Response of photosynthetic performance, water relations and osmotic adjustment to salinity acclimation in two wheat cultivars. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	13
206	Bioaccumulation of Fluoride in Plants and Its Microbially Assisted Remediation: A Review of Biological Processes and Technological Performance. Processes, 2021, 9, 2154.	1.3	13
207	Predicting the Potential Suitable Climate for Coconut (Cocos nucifera L.) Cultivation in India under Climate Change Scenarios Using the MaxEnt Model. Plants, 2022, 11, 731.	1.6	13
208	Onâ€farm diagnosis and management of iron chlorosis in groundnut. Journal of Plant Nutrition, 2000, 23, 1471-1483.	0.9	12
209	Field Crops and the Fear of Heat Stress – Opportunities, Challenges and Future Directions. Procedia Environmental Sciences, 2015, 29, 36-37.	1.3	12
210	The Response of Water and Nutrient Dynamics and of Crop Yield to Conservation Agriculture in the Ethiopian Highlands. Sustainability, 2020, 12, 5989.	1.6	12
211	Testing of Commercial Inoculants to Enhance P Uptake and Grain Yield of Promiscuous Soybean in Kenya. Sustainability, 2020, 12, 3803.	1.6	12
212	A comparative Study on the Effect of Seed Pre-sowing Treatments with Microwave Radiation and Salicylic Acid in Alleviating the Drought-Induced Damage in Wheat. Journal of Plant Growth Regulation, 2021, 40, 48-66.	2.8	12
213	Effect of tillers on corn yield: Exploring trait plasticity potential in unpredictable environments. Crop Science, 2021, 61, 3660-3674.	0.8	12
214	Do Water and Nitrogen Management Practices Impact Grain Quality in Maize?. Agronomy, 2021, 11, 1851.	1.3	12
215	Assessment of Land Use and Land Cover Changes on Soil Erosion Using Remote Sensing, GIS and RUSLE Model: A Case Study of Battambang Province, Cambodia. Sustainability, 2022, 14, 4066.	1.6	12
216	Kernel weight contribution to yield genetic gain of maize: a global review and US case studies. Journal of Experimental Botany, 2022, 73, 3597-3609.	2.4	12

#	Article	IF	CITATIONS
217	RESPONSE OF GROUNDNUTS DEPENDENT ON SYMBIOTIC AND INORGANIC NITROGEN TO HIGH AIR AND SOIL TEMPERATURES. Journal of Plant Nutrition, 2001, 24, 623-637.	0.9	11
218	Disease assessment methods and their use in simulating growth and yield of peanut crops affected by leafspot disease. Annals of Applied Biology, 2005, 146, 469-479.	1.3	11
219	Effect of cytoplasmic diversity on post anthesis heat tolerance in wheat. Euphytica, 2015, 204, 383-394.	0.6	11
220	Assessing Wheat Yield, Biomass, and Water Productivity Responses to Growth Stage Based Irrigation Water Allocation. Transactions of the ASABE, 2017, 60, 107-121.	1.1	11
221	Characterization, Genetic Analyses, and Identification of QTLs Conferring Metabolic Resistance to a 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor in Sorghum (Sorghum bicolor). Frontiers in Plant Science, 2020, 11, 596581.	1.7	11
222	Responses of Soybean Genotypes to Different Nitrogen and Phosphorus Sources: Impacts on Yield Components, Seed Yield, and Seed Protein. Plants, 2022, 11, 298.	1.6	11
223	Selenium supplementation to lentil (Lens culinaris Medik.) under combined heat and drought stress improves photosynthetic ability, antioxidant systems, reproductive function and yield traits. Plant and Soil, 2023, 486, 7-23.	1.8	11
224	Evaluating crop management options for sorghum, pearl millet and peanut to minimize risk under the projected midcentury climate scenario for different locations in Senegal. Climate Risk Management, 2022, 36, 100436.	1.6	11
225	NUTRITION Iron Chlorosis. , 2003, , 649-656.		10
226	Influence of fungicide and sowing density on the growth and yield of two groundnut cultivars. Journal of Agricultural Science, 2009, 147, 179-191.	0.6	10
227	Weed Competition and Management in Sorghum. Agronomy, 0, , 347-360.	0.2	10
228	Integrating root architecture and physiological approaches for improving drought tolerance in common bean (Phaseolus vulgaris L.). Plant Physiology Reports, 2021, 26, 4-22.	0.7	10
229	Estimating Surface and Groundwater Irrigation Potential under Different Conservation Agricultural Practices and Irrigation Systems in the Ethiopian Highlands. Water (Switzerland), 2021, 13, 1645.	1.2	10
230	The Interplay Between Policy and COVID-19 Outbreaks in South Asia: Longitudinal Trend Analysis of Surveillance Data. JMIR Public Health and Surveillance, 2021, 7, e24251.	1.2	10
231	Comparative Transcriptome Analysis Reveals Genetic Mechanisms of Sugarcane Aphid Resistance in Grain Sorghum. International Journal of Molecular Sciences, 2021, 22, 7129.	1.8	10
232	Evaluation of Land Use and Land Cover Change and Its Drivers in Battambang Province, Cambodia from 1998 to 2018. Sustainability, 2021, 13, 11170.	1.6	10
233	Response of Physiological, Reproductive Function and Yield Traits in Cultivated Chickpea (Cicer) Tj ETQq1 1 0.784	4314 rgB7 1.7	「/Qyerlock]

#	Article	IF	CITATIONS
235	Understanding Physiology and Impacts of High Temperature Stress on the Progamic Phase of Coconut (Cocos nucifera L.). Plants, 2020, 9, 1651.	1.6	9
236	Registration of the sorghum nested association mapping (NAM) population in RTx430 background. Journal of Plant Registrations, 2021, 15, 395-402.	0.4	9
237	Safeners improve earlyâ€stage chillingâ€stress tolerance in sorghum. Journal of Agronomy and Crop Science, 2021, 207, 705-716.	1.7	9
238	High temperature stress , 2014, , 201-220.		9
239	Evaluating Irrigation and Farming Systems with Solar MajiPump in Ethiopia. Agronomy, 2021, 11, 17.	1.3	9
240	Single Application of Biochar Increases Fertilizer Efficiency, C Sequestration, and pH over the Long-Term in Sandy Soils of Senegal. Sustainability, 2021, 13, 11817.	1.6	9
241	Post-silking 15N labelling reveals an enhanced nitrogen allocation to leaves in modern maize (Zea) Tj ETQq1 1	0.784314 r 1.6	gBT ₉ /Overloc
242	A comparison of multiple calibration and ensembling methods for estimating genetic coefficients of CERES-Rice to simulate phenology and yields. Field Crops Research, 2022, 284, 108560.	2.3	9
243	The Influence of Different Fertilization Strategies on the Grain Yield of Field Peas (Pisum sativum L.) under Conventional and Conservation Tillage. Agronomy, 2020, 10, 1728.	1.3	8
244	Water Conservation Methods and Cropping Systems for Increased Productivity and Economic Resilience in Burkina Faso. Water (Switzerland), 2020, 12, 976.	1.2	8
245	To meet grand challenges, agricultural scientists must engage in the politics of constructive collective action. Crop Science, 2021, 61, 24-31.	0.8	8
246	Management options for mid-century maize (Zea mays L.) in Ethiopia. Science of the Total Environment, 2021, 758, 143635.	3.9	8
247	Heat Priming of Lentil (Lens culinaris Medik.) Seeds and Foliar Treatment with γ-Aminobutyric Acid (GABA), Confers Protection to Reproductive Function and Yield Traits under High-Temperature Stress Environments. International Journal of Molecular Sciences, 2021, 22, 5825.	1.8	8
248	Current status and prospects of herbicideâ€resistant grain sorghum (<i>Sorghum bicolor</i>). Pest Management Science, 2022, 78, 409-415.	1.7	8
249	A single gene inherited trait confers metabolic resistance to chlorsulfuron in grain sorghum (Sorghum bicolor). Planta, 2021, 253, 48.	1.6	8
250	Cold Tolerance during the Reproductive Phase in Chickpea (Cicer arietinum L.) Is Associated with Superior Cold Acclimation Ability Involving Antioxidants and Cryoprotective Solutes in Anthers and Ovules. Antioxidants, 2021, 10, 1693.	2.2	8
251	A Simple Quantitative Model to Predict Leaf Area Index in Sorghum. Agronomy Journal, 2014, 106, 219-226.	0.9	7
252	Evaluation of Brown Midrib Sorghum Mutants as a Potential Biomass Feedstock for 2,3-Butanediol Biosynthesis. Applied Biochemistry and Biotechnology, 2017, 183, 1093-1110.	1.4	7

#	Article	IF	CITATIONS
253	Drought and High Temperature Stress and Traits Associated with Tolerance. Agronomy, 2018, , .	0.2	7
254	Sorghum Growth and Development. Agronomy, 0, , 155-172.	0.2	7
255	Sunlit, controlledâ€environment chambers are essential for comparing plant responses to various climates. Agronomy Journal, 2020, 112, 4531-4549.	0.9	7
256	Modeling the effects of crop management on food barley production under a midcentury changing climate in northern Ethiopia. Climate Risk Management, 2021, 32, 100308.	1.6	7
257	Overview of Farmers' Perceptions of Current Status and Constraints to Soybean Production in Ratanakiri Province of Cambodia. Sustainability, 2021, 13, 4433.	1.6	7
258	Biomass Quantity and Quality from Different Year-Round Cereal–Legume Cropping Systems as Forage or Fodder for Livestock. Sustainability, 2021, 13, 9414.	1.6	7
259	Grain micronutrient composition and yield components in fieldâ€grown wheat are negatively impacted by high nightâ€ŧime temperature. Cereal Chemistry, 0, , .	1.1	7
260	Identification of Sustainable Development Priorities for Agriculture through Sustainable Livelihood Security Indicators for Karnataka, India. Sustainability, 2022, 14, 1831.	1.6	7
261	Response of Peanut to Fungicide and Phosphorus in On-station and On-farm Tests in Ghana. Peanut Science, 2009, 36, 157-164.	0.2	6
262	Genetic Variation for Heat Tolerance in Primitive Cultivated Subspecies of <i>Triticum turgidum</i> L Journal of Crop Improvement, 2015, 29, 565-580.	0.9	6
263	Agroclimatology of Maize, Sorghum, and Pearl Millet. Agronomy, 0, , 201-241.	0.2	6
264	Evaluating optimal irrigation for potential yield and economic performance of major crops in southwestern Kansas. Agricultural Water Management, 2021, 244, 106536.	2.4	6
265	Evaluating optimal irrigation strategies for maize in Western Kansas. Agricultural Water Management, 2021, 246, 106677.	2.4	6
266	Land Use, Landform, and Soil Management as Determinants of Soil Physicochemical Properties and Microbial Abundance of Lower Brahmaputra Valley, India. Sustainability, 2022, 14, 2241.	1.6	6
267	Footprints of corn nitrogen management on the following soybean crop. Agronomy Journal, 2022, 114, 1475-1488.	0.9	6
268	Assessing impact of salinity and climate scenarios on dry season field crops in the coastal region of Bangladesh. Agricultural Systems, 2022, 200, 103428.	3.2	6
269	Sorghum: A Multipurpose Bioenergy Crop. Agronomy, 0, , 399-424.	0.2	5
270	Soil and Climate Characterization to Define Environments for Summer Crops in Senegal. Sustainability, 2021, 13, 11739.	1.6	5

#	Article	IF	CITATIONS
271	Impacts of Abiotic Stresses on Sorghum Physiology. , 2020, , 157-188.		5
272	Conservation and Conventional Vegetable Cultivation Increase Soil Organic Matter and Nutrients in the Ethiopian Highlands. Water (Switzerland), 2022, 14, 476.	1.2	5
273	Sorghum Growth and Development. Agronomy, 2016, , .	0.2	4
274	Sorghum Crop Modeling and Its Utility in Agronomy and Breeding. Agronomy, 2016, , .	0.2	4
275	Waterâ€deficit stress alters intraâ€panicle grain number in sorghum. Crop Science, 2021, 61, 2680-2695.	0.8	4
276	An integrated approach of field, weather, and satellite data for monitoring maize phenology. Scientific Reports, 2021, 11, 15711.	1.6	4
277	Effects of Ultraviolet-B Radiation and Its Interactions with Climate Change Factors on Agricultural Crop Growth and Yield. , 2010, , 395-436.		4
278	High-resolution unmanned aircraft systems imagery for stay-green characterization in grain sorghum (Sorghum bicolor L.). Journal of Applied Remote Sensing, 2021, 15, .	0.6	4
279	Sorghum Genetic Resources. Agronomy, 2016, , .	0.2	3
280	Evaluating heat tolerance of a complete set of wheatâ€ <i>Aegilops geniculata</i> chromosome addition lines. Journal of Agronomy and Crop Science, 2018, 204, 588-593.	1.7	3
281	Editorial: Adaptation of Dryland Plants to a Changing Environment. Frontiers in Plant Science, 2019, 10, 1228.	1.7	3
282	Sorghum Hybrids Development for Important Traits: Progress and Way Forward. Agronomy, 2019, , 97-117.	0.2	3
283	Registration of Six Grain Sorghum Pollinator (R) Lines. Journal of Plant Registrations, 2019, 13, 113-117.	0.4	3
284	Confirmation and Characterization of the First Case of Acetolactate Synthase (ALS)-Inhibitor—Resistant Wild Buckwheat (Polygonum convolvulus L.) in the United States. Agronomy, 2020, 10, 1496.	1.3	3
285	Variation in stalk rot resistance and physiological traits of sorghum genotypes in the field under high temperature. Journal of General Plant Pathology, 2020, 86, 350-359.	0.6	3
286	Nano-oxides immobilize cadmium, lead, and zinc in mine spoils and contaminated soils facilitating plant growth. Canadian Journal of Soil Science, 2021, 101, 543-554.	0.5	3
287	PLANTS AND THE ENVIRONMENT Ozone Depletion. , 2003, , 749-756.		3
288	Registration of Nine Grain Sorghum Seed Parent (A/B) Lines. Journal of Plant Registrations, 2015, 9, 244-248.	0.4	3

#	Article	IF	CITATIONS
289	Impact of High-Cadence Earth Observation in Maize Crop Phenology Classification. Remote Sensing, 2022, 14, 469.	1.8	3
290	Ozone Depletion. , 2017, , 318-326.		2
291	Weed Competition and Management in Sorghum. Agronomy, 2017, , .	0.2	2
292	Use of high-resolution unmanned aerial systems imagery and machine learning to evaluate grain sorghum tolerance to mesotrione. Journal of Applied Remote Sensing, 2021, 15, .	0.6	2
293	Sorghum Management Systems and Production Technology Around the Globe. , 2020, , 251-293.		2
294	Overlapping Delta and Omicron Outbreaks During the COVID-19 Pandemic: Dynamic Panel Data Estimates. JMIR Public Health and Surveillance, 2022, 8, e37377.	1.2	2
295	Testing Approaches and Components in Physiologically Based Crop Models for Sensitivity to Climatic Factors. Advances in Agricultural Systems Modeling, 0, , 1-31.	0.3	1
296	Agroclimatology of Oats, Barley, and Minor Millets. Agronomy, 0, , 243-277.	0.2	1
297	Sorghum Hybrids Development for Important Traits: Progress and Way Forward. Agronomy, 2019, , .	0.2	1
298	Maize-Legumes Rotation Effects on Growth and Yield of Maize in a Semi-Arid Agro-Ecology in Northern Ghana. International Journal of Plant & Soil Science, 0, , 1-16.	0.2	1
299	Physiological Changes Across Historical Sorghum Hybrids Released During the Last Six Decades. Kansas Agricultural Experiment Station Research Reports, 2020, 6, .	0.0	1
300	Tiller Contributions to Low-Density Corn Biomass and Yield. Kansas Agricultural Experiment Station Research Reports, 2020, 6, .	0.0	1
301	Evaluating Surface Energy Balance System (SEBS) Using Aircraft Data Collected during BEAREX07. , 2011, , .		0
302	Genotype × Environment × Management Interactions: US Sorghum Cropping Systems. Agronomy, 2016, , .	0.2	0
303	Water-Use Efficiency. Agronomy, 2016, , .	0.2	0
304	Sorghum Genetic Resources. Agronomy, 2019, , 47-72.	0.2	0
305	Diversity, Equity, and Inclusion Initiative Update. CSA News, 2021, 66, 26-27.	0.1	0
306	Winter Pea Mixtures with Triticale and Oat for Biogas and Methane Production in Semiarid Conditions of the South Pannonian Basin. Agronomy, 2021, 11, 1800.	1.3	0

#	Article	IF	CITATIONS
307	Pretreatment Methods for Biofuel Production from Sorghum. , 2020, , 755-788.		0
308	Assessing Impact of Salinity and Climate Scenarios on Dry Season Field Crops in the Coastal Region of Bangladesh. SSRN Electronic Journal, 0, , .	0.4	0