Fabien Mounet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/781108/publications.pdf

Version: 2024-02-01

687363 888059 1,060 17 13 17 citations h-index g-index papers 17 17 17 1785 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Regulation of secondary cell wall lignification by abiotic and biotic constraints. Advances in Botanical Research, 2022, , .	1.1	1
2	Implementing the CRISPR/Cas9 Technology in Eucalyptus Hairy Roots Using Wood-Related Genes. International Journal of Molecular Sciences, 2020, 21, 3408.	4.1	30
3	Wood Architecture and Composition Are Deeply Remodeled in Frost Sensitive Eucalyptus Overexpressing CBF/DREB1 Transcription Factors. International Journal of Molecular Sciences, 2020, 21, 3019.	4.1	7
4	Distinct leaf transcriptomic response of water deficient Eucalyptus grandis submitted to potassium and sodium fertilization. PLoS ONE, 2019, 14, e0218528.	2. 5	13
5	NMR-Based Tissular and Developmental Metabolomics of Tomato Fruit. Metabolites, 2019, 9, 93.	2.9	18
6	A systems biology view of wood formation in <i>Eucalyptus grandis</i> trees submitted to different potassium and water regimes. New Phytologist, 2019, 223, 766-782.	7.3	48
7	Digging in wood: New insights in the regulation of wood formation in tree species. Advances in Botanical Research, 2019, 89, 201-233.	1.1	14
8	Long cold exposure induces transcriptional and biochemical remodelling of xylem secondary cell wall in Eucalyptus. Tree Physiology, 2018, 38, 409-422.	3.1	27
9	Special trends in <scp>CBF</scp> and <scp>DREB2</scp> groups in <i>Eucalyptus gunnii</i> vs <i>Eucalyptus grandis</i> suggest that <scp>CBF</scp> are master players in the tradeâ€off between growth and stress resistance. Physiologia Plantarum, 2017, 159, 445-467.	5.2	24
10	The Woody-Preferential Gene EgMYB88 Regulates the Biosynthesis of Phenylpropanoid-Derived Compounds in Wood. Frontiers in Plant Science, 2016, 7, 1422.	3.6	20
11	Eucalyptus spp. and Populus spp. coping with salinity stress: an approach on growth, physiological and molecular features in the context of short rotation coppice (SRC). Trees - Structure and Function, 2016, 30, 1873-1891.	1.9	18
12	Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. Journal of Experimental Botany, 2012, 63, 4901-4917.	4.8	82
13	Tomato GDSL1 Is Required for Cutin Deposition in the Fruit Cuticle. Plant Cell, 2012, 24, 3119-3134.	6.6	175
14	Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development \hat{A} \hat{A} \hat{A} . Plant Physiology, 2009, 149, 1505-1528.	4.8	199
15	Silencing of the Mitochondrial Ascorbate Synthesizing Enzyme <scp>l</scp> -Galactono-1,4-Lactone Dehydrogenase Affects Plant and Fruit Development in Tomato. Plant Physiology, 2007, 145, 1408-1422.	4.8	184
16	Quantitative metabolic profiles of tomato flesh and seeds during fruit development: complementary analysis with ANN and PCA. Metabolomics, 2007, 3, 273-288.	3.0	119
17	The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants. Journal of Experimental Botany, 2006, 57, 961-970.	4.8	81