Patricia Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7810961/publications.pdf

Version: 2024-02-01

77 papers	3,116 citations	172386 29 h-index	168321 53 g-index
89 all docs	89 docs citations	89 times ranked	4915 citing authors

#	Article	IF	CITATIONS
1	Firefly luciferase offers superior performance to AkaLuc for tracking the fate of administered cell therapies. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 796-808.	3.3	16
2	Hypoxia-induced HIF1 \hat{l} ± activation regulates small extracellular vesicle release in human embryonic kidney cells. Scientific Reports, 2022, 12, 1443.	1.6	16
3	Murine models of renal ischemia reperfusion injury: An opportunity for refinement using noninvasive monitoring methods. Physiological Reports, 2022, 10, e15211.	0.7	5
4	Mesenchymal stromal cells: what have we learned so far about their therapeutic potential and mechanisms of action?. Emerging Topics in Life Sciences, 2021, 5, 549-562.	1.1	12
5	Measuring Kidney Perfusion, pH, and Renal Clearance Consecutively Using MRI and Multispectral Optoacoustic Tomography. Molecular Imaging and Biology, 2020, 22, 494-503.	1.3	13
6	Multimodal Imaging Techniques Show Differences in Homing Capacity Between Mesenchymal Stromal Cells and Macrophages in Mouse Renal Injury Models. Molecular Imaging and Biology, 2020, 22, 904-913.	1.3	10
7	Perylene Diimide Nanoprobes for In Vivo Tracking of Mesenchymal Stromal Cells Using Photoacoustic Imaging. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27930-27939.	4.0	5
8	A Noninvasive Imaging Toolbox Indicates Limited Therapeutic Potential of Conditionally Activated Macrophages in a Mouse Model of Multiple Organ Dysfunction. Stem Cells International, 2019, 2019, 1-13.	1.2	7
9	The ZT Biopolymer: A Self-Assembling Protein Scaffold for Stem Cell Applications. International Journal of Molecular Sciences, 2019, 20, 4299.	1.8	4
10	Plasma Polymer Coatings To Direct the Differentiation of Mouse Kidney-Derived Stem Cells into Podocyte and Proximal Tubule-like Cells. ACS Biomaterials Science and Engineering, 2019, 5, 2834-2845.	2.6	4
11	Selfâ€Assembling Proteins as Highâ€Performance Substrates for Embryonic Stem Cell Selfâ€Renewal. Advanced Materials, 2019, 31, 1807521.	11.1	6
12	<i>In vivo</i> fate of free and encapsulated iron oxide nanoparticles after injection of labelled stem cells. Nanoscale Advances, 2019, 1, 367-377.	2.2	16
13	Functional comparison of distinct <i>Brachyury</i> + states in a renal differentiation assay. Biology Open, 2018, 7, .	0.6	2
14	SPIONs for cell labelling and tracking using MRI: magnetite or maghemite?. Biomaterials Science, 2018, 6, 101-106.	2.6	40
15	Magnetic Resonance Imaging for Characterization of a Chick Embryo Model of Cancer Cell Metastases. Molecular Imaging, 2018, 17, 153601211880958.	0.7	19
16	Multicolour In Vivo Bioluminescence Imaging Using a NanoLucâ€Based BRET Reporter in Combination with Firefly Luciferase. Contrast Media and Molecular Imaging, 2018, 2018, 1-10.	0.4	26
17	Non-invasive imaging reveals conditions that impact distribution and persistence of cells after in vivo administration. Stem Cell Research and Therapy, 2018, 9, 332.	2.4	66
18	Transdermal Measurement of Glomerular Filtration Rate in Mice. Journal of Visualized Experiments, 2018, , .	0.2	41

#	Article	IF	CITATIONS
19	Assessing the Effectiveness of a Far-Red Fluorescent Reporter for Tracking Stem Cells In Vivo. International Journal of Molecular Sciences, 2018, 19, 19.	1.8	30
20	Multimodal cell tracking from systemic administration to tumour growth by combining gold nanorods and reporter genes. ELife, $2018, 7, .$	2.8	33
21	Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLoS ONE, 2018, 13, e0199918.	1.1	22
22	Silver nanoparticle modified surfaces induce differentiation of mouse kidney-derived stem cells. RSC Advances, 2018, 8, 20334-20340.	1.7	6
23	Functionalized superparamagnetic iron oxide nanoparticles provide highly efficient iron-labeling in macrophages for magnetic resonance–based detection in vivo. Cytotherapy, 2017, 19, 555-569.	0.3	44
24	Surface nanotopography guides kidney-derived stem cell differentiation into podocytes. Acta Biomaterialia, 2017, 56, 171-180.	4.1	27
25	Human Kidney-Derived Cells Ameliorate Acute Kidney Injury Without Engrafting into Renal Tissue. Stem Cells Translational Medicine, 2017, 6, 1373-1384.	1.6	32
26	Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. Npj Regenerative Medicine, 2017, 2, 28.	2.5	47
27	Nephron Progenitors. , 2017, , 1053-1065.		1
28	Characterisation of Cultured Mesothelial Cells Derived from the Murine Adult Omentum. PLoS ONE, 2016, 11, e0158997.	1.1	20
29	MS-1 <i>magA</i> . Molecular Imaging, 2016, 15, 153601211664153.	0.7	14
30	Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell-based regenerative medicine therapies in models of kidney disease. European Journal of Pharmacology, 2016, 790, 74-82.	1.7	25
31	Coâ€precipitation of DEAEâ€dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast. Contrast Media and Molecular Imaging, 2016, 11, 362-370.	0.4	24
32	Evaluating the effectiveness of transferrin receptorâ€1 (<i>TfR1</i>) as a magnetic resonance reporter gene. Contrast Media and Molecular Imaging, 2016, 11, 236-244.	0.4	25
33	Autologous Cells for Kidney Bioengineering. Current Transplantation Reports, 2016, 3, 207-220.	0.9	10
34	Preventing Plasmon Coupling between Gold Nanorods Improves the Sensitivity of Photoacoustic Detection of Labeled Stem Cells <i>iin Vivo</i> . ACS Nano, 2016, 10, 7106-7116.	7.3	78
35	Amniotic Fluid Stem Cells within Chimeric Kidney Rudiments Differentiate to Functional Podocytes after Transplantation into Mature Rat Kidneys. Journal of the American Society of Nephrology: JASN, 2016, 27, 1266-1268.	3.0	1
36	A descriptive guide for absolute quantification of produced shRNA pseudotyped lentiviral particles by real-time PCR. Journal of Biological Methods, 2016, 3, e55.	1.0	1

#	Article	lF	Citations
37	Measures of kidney function by minimally invasive techniques correlate with histological glomerular damage in SCID mice with adriamycin-induced nephropathy. Scientific Reports, 2015, 5, 13601.	1.6	51
38	Overexpression of the MRI Reporter Genes Ferritin and Transferrin Receptor Affect Iron Homeostasis and Produce Limited Contrast in Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2015, 16, 15481-15496.	1.8	46
39	Human Urine as a Noninvasive Source of Kidney Cells. Stem Cells International, 2015, 2015, 1-7.	1.2	45
40	The Potential of Nanomaterials for Drug Delivery, Cell Tracking, and Regenerative Medicine 2014. Journal of Nanomaterials, 2015, 2015, 1-2.	1.5	4
41	Tailoring the surface charge of dextran-based polymer coated SPIONs for modulated stem cell uptake and MRI contrast. Biomaterials Science, 2015, 3, 608-616.	2.6	44
42	Concise Review: Workshop Review: Understanding and Assessing the Risks of Stem Cell-Based Therapies. Stem Cells Translational Medicine, 2015, 4, 389-400.	1.6	98
43	Patterned substrates fabricated by a controlled freezing approach and biocompatibility evaluation by stem cells. Materials Science and Engineering C, 2015, 49, 390-399.	3.8	12
44	Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chemical Society Reviews, 2015, 44, 6733-6748.	18.7	176
45	Assessing the Efficacy of Nano- and Micro-Sized Magnetic Particles as Contrast Agents for MRI Cell Tracking. PLoS ONE, 2014, 9, e100259.	1.1	56
46	The Potential of Nanomaterials for Drug Delivery, Cell Tracking, and Regenerative Medicine 2013. Journal of Nanomaterials, 2014, 2014, 1-2.	1.5	0
47	The self-renewal of mouse embryonic stem cells is regulated by cell–substratum adhesion and cell spreading. International Journal of Biochemistry and Cell Biology, 2013, 45, 2698-2705.	1.2	41
48	Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates. Acta Biomaterialia, 2013, 9, 6041-6051.	4.1	38
49	Structural diversity of the cAMP-dependent protein kinase regulatory subunit in Caenorhabditis elegans. Cellular Signalling, 2013, 25, 168-177.	1.7	5
50	Characterization of the interface between adsorbed fibronectin and human embryonic stem cells. Journal of the Royal Society Interface, 2013, 10, 20130139.	1.5	32
51	Stem Cells Derived from Neonatal Mouse Kidney Generate Functional Proximal Tubule-Like Cells and Integrate into Developing Nephrons In Vitro. PLoS ONE, 2013, 8, e62953.	1.1	17
52	The Potential of Nanomaterials for Drug Delivery, Cell Tracking, and Regenerative Medicine. Journal of Nanomaterials, 2012, 2012, 1-2.	1.5	4
53	Development of embryonic stem cells in recombinant kidneys. Organogenesis, 2012, 8, 125-136.	0.4	25
54	Photothermal Microscopy of the Core of Dextran-Coated Iron Oxide Nanoparticles During Cell Uptake. ACS Nano, 2012, 6, 5961-5971.	7.3	53

#	Article	IF	CITATIONS
55	Integration potential of mouse and human bone marrow-derived mesenchymal stem cells. Differentiation, 2012, 83, 128-137.	1.0	19
56	Poly[2-(methacryloyloxy)ethylphosphorylcholine]-coated iron oxide nanoparticles: synthesis, colloidal stability and evaluation for stem cell labelling. Chemical Communications, 2012, 48, 9373.	2.2	18
57	Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet?. Chemical Society Reviews, 2012, 41, 2707.	18.7	157
58	Differentiation of Podocyte and Proximal Tubule-Like Cells from a Mouse Kidney-Derived Stem Cell Line. Stem Cells and Development, 2012, 21, 296-307.	1.1	35
59	Quantum Dots Do Not Affect the Behaviour of Mouse Embryonic Stem Cells and Kidney Stem Cells and Are Suitable for Short-Term Tracking. PLoS ONE, 2012, 7, e32650.	1.1	20
60	Manufacture of Clinical Grade Human Placenta-Derived Multipotent Mesenchymal Stromal Cells. Methods in Molecular Biology, 2011, 698, 89-106.	0.4	19
61	The potential of small chemical functional groups for directing the differentiation of kidney stem cells. Biochemical Society Transactions, 2010, 38, 1062-1066.	1.6	13
62	Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Research, 2009, 3, 28-38.	0.3	60
63	Manufacturing of human placentaâ€derived mesenchymal stem cells for clinical trials. British Journal of Haematology, 2009, 144, 571-579.	1.2	145
64	The geometric control of E14 and R1 mouse embryonic stem cell pluripotency by plasma polymer surface chemical gradients. Biomaterials, 2009, 30, 1066-1070.	5.7	59
65	17-P008 Evaluating the expression profile and developmental potential of mouse kidney stem cells. Mechanisms of Development, 2009, 126, S273.	1.7	1
66	siRNA-mediated knockdown of a splice variant of the PK-A catalytic subunit gene causes adult-onset paralysis in C. elegans. Gene, 2008, 408, 157-163.	1.0	7
67	Points to Consider in Designing Mesenchymal Stem Cell-Based Clinical Trials. Transfusion Medicine and Hemotherapy, 2008, 35, 3-3.	0.7	19
68	The KIDSTEM European Research Training Network. Organogenesis, 2007, 3, 2-5.	0.4	10
69	An explicit test of the phospholipid saturation hypothesis of acquired cold tolerance in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5489-5494.	3.3	116
70	Regulation of Mesodermal Differentiation of Mouse Embryonic Stem Cells by Basement Membranes. Journal of Biological Chemistry, 2007, 282, 29701-29711.	1.6	49
71	The topographical regulation of embryonic stem cell differentiation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1009-1020.	1.8	34
72	Distinct GATA6- and laminin-dependent mechanisms regulate endodermal and ectodermal embryonic stem cell fates. Development (Cambridge), 2004, 131, 5277-5286.	1.2	81

PATRICIA MURRAY

#	Article	IF	CITATIONS
73	Topography, stem cell behaviour, and organogenesis. Pediatric Surgery International, 2004, 20, 737-740.	0.6	13
74	Regulation of laminin and COUP-TF expression in extraembryonic endodermal cells. Mechanisms of Development, 2001, 101, 213-215.	1.7	32
75	The regulation of embryonic stem cell differentiation by leukaemia inhibitory factor (LIF). Differentiation, 2001, 68, 227-234.	1.0	105
76	Regulation of Programmed Cell Death by Basement Membranes in Embryonic Development. Journal of Cell Biology, 2000, 150, 1215-1221.	2.3	125
77	Absence of Basement Membranes after Targeting the LAMC1 Gene Results in Embryonic Lethality Due to Failure of Endoderm Differentiation. Journal of Cell Biology, 1999, 144, 151-160.	2.3	474