
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7810693/publications.pdf Version: 2024-02-01

PODRICO SOTO

#	Article	IF	CITATIONS
1	Geometrical characterization of active contraction pulses in epithelial cells using the two-dimensional vertex model. Journal of the Royal Society Interface, 2022, 19, 20210851.	1.5	4
2	Stability of the homogeneous steady state for a model of a confined quasi-two-dimensional granular fluid. EPJ Web of Conferences, 2021, 249, 04005.	0.1	1
3	Active mixtures in a narrow channel: motility diversity changes cluster sizes. Soft Matter, 2021, 17, 2050-2061.	1.2	11
4	Navier–Stokes transport coefficients for a model of a confined quasi-two-dimensional granular binary mixture. Physics of Fluids, 2021, 33, .	1.6	5
5	Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. ELife, 2021, 10, .	2.8	6
6	Diversity of self-propulsion speeds reduces motility-induced clustering in confined active matter. Soft Matter, 2021, 17, 9926-9936.	1.2	10
7	Bacteria driving droplets. Soft Matter, 2020, 16, 1359-1365.	1.2	25
8	Vertex model instabilities for tissues subject to cellular activity or applied stresses. Physical Review E, 2020, 102, 052604.	0.8	5
9	Energy nonequipartition in a collisional model of a confined quasi-two-dimensional granular mixture. Physical Review E, 2020, 102, 052904.	0.8	6
10	3D Spatial Exploration by <i>E. coli</i> Echoes Motor Temporal Variability. Physical Review X, 2020, 10, .	2.8	14
11	Run-and-tumble bacteria slowly approaching the diffusive regime. Physical Review E, 2020, 101, 062607.	0.8	19
12	<i>E. coli</i> "super-contaminates―narrow ducts fostered by broad run-time distribution. Science Advances, 2020, 6, eaay0155.	4.7	29
13	Cell migration driven by substrate deformation gradients. Physical Biology, 2019, 16, 066001.	0.8	6
14	Swimming bacteria in Poiseuille flow: The quest for active Bretherton-Jeffery trajectories. Europhysics Letters, 2019, 126, 44003.	0.7	29
15	Magnetotactic bacteria in a droplet self-assemble into a rotary motor. Nature Communications, 2019, 10, 5082.	5.8	41
16	Hyperuniform states generated by a critical friction field. Physical Review E, 2019, 100, 032902.	0.8	4
17	Nonideal rheology of semidilute bacterial suspensions. Physical Review E, 2019, 99, 012613.	0.8	2
18	Case study: Discrete element modeling of wear in mining hoppers. Wear, 2019, 430-431, 120-125.	1.5	21

#	Article	IF	CITATIONS
19	Directed assembly of active colloidal molecules. New Journal of Physics, 2019, 21, 033041.	1.2	5
20	GPU parallel simulation algorithm of Brownian particles with excluded volume using Delaunay triangulations. Computer Physics Communications, 2018, 229, 148-161.	3.0	8
21	Critical phenomena in quasi-two-dimensional vibrated granular systems. Physical Review E, 2018, 97, 012907.	0.8	11
22	Enskog kinetic theory for a model of a confined quasi-two-dimensional granular fluid. Physical Review E, 2018, 98, .	0.8	11
23	Universality of active wetting transitions. Physical Review E, 2018, 98, .	0.8	10
24	Active colloidal chains with cilia- and flagella-like motion. New Journal of Physics, 2018, 20, 053014.	1.2	12
25	Stability and receptivity of boundary layers in a swirl flow channel. Acta Mechanica, 2018, 229, 4005-4015.	1.1	2
26	Effective two-dimensional model for granular matter with phase separation. Physical Review E, 2018, 98, 022901.	0.8	10
27	Heat transfer enhancement strategies in a swirl flow minichannel heat sink based on hydrodynamic receptivity. International Journal of Heat and Mass Transfer, 2018, 127, 245-256.	2.5	10
28	Wetting Transitions Displayed by Persistent Active Particles. Physical Review Letters, 2017, 119, 078001.	2.9	23
29	Coarsening and clustering in run-and-tumble dynamics with short-range exclusion. Physical Review E, 2016, 94, 022603.	0.8	20
30	Thermal design exploration of a swirl flow microchannel heat sink for high heat flux applications based on numerical simulations. Applied Thermal Engineering, 2016, 109, 22-34.	3.0	15
31	Self-assembly of active colloidal molecules with dynamic function. Physical Review E, 2015, 91, 052304.	0.8	63
32	Effect of the vibration profile on shallow granular systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20150116.	1.6	2
33	Universality and criticality of a second-order granular solid-liquid-like phase transition. Physical Review E, 2015, 91, 012141.	0.8	16
34	Relaxation processes after instantaneous shear-rate reversal in a dense granular flow. Europhysics Letters, 2015, 109, 64002.	0.7	8
35	Shear viscosity of a model for confined granular media. Physical Review E, 2014, 90, 062204.	0.8	14
36	Dynamics of a first-order transition to an absorbing state. Physical Review E, 2014, 89, 042206.	0.8	12

#	Article	IF	CITATIONS
37	Casimir effect in swimmer suspensions. Physical Review E, 2014, 90, 013024.	0.8	15
38	Self-Assembly of Catalytically Active Colloidal Molecules: Tailoring Activity Through Surface Chemistry. Physical Review Letters, 2014, 112, 068301.	2.9	181
39	Run-and-tumble dynamics in a crowded environment: Persistent exclusion process for swimmers. Physical Review E, 2014, 89, 012706.	0.8	87
40	Induced diffusion of tracers in a bacterial suspension: theory and experiments. Journal of Fluid Mechanics, 2013, 729, 423-444.	1.4	102
41	Capillarylike fluctuations of a solid-liquid interface in a noncohesive granular system. Physical Review E, 2013, 87, 040202.	0.8	20
42	Hydrodynamic modes in a confined granular fluid. Physical Review E, 2013, 87, 022209.	0.8	35
43	Active temperature and velocity correlations produced by a swimmer suspension. Physical Review E, 2013, 87, 053022.	0.8	2
44	Subdiffusive behavior of a dilute non-Brownian suspension under shear. Physical Review E, 2013, 87, 042311.	0.8	1
45	Stochastic resonance on the transverse displacement of swimmers in an oscillatory shear flow. Physical Review E, 2012, 86, 037301.	0.8	2
46	A two-sphere model for bacteria swimming near solid surfaces. Physics of Fluids, 2012, 24, .	1.6	36
47	Fluctuations and Criticality of a Granular Solid-Liquid-Like Phase Transition. Physical Review Letters, 2012, 109, 095701.	2.9	53
48	Characterization of the energy bursts in vibrated shallow granular systems. Granular Matter, 2012, 14, 157-162.	1.1	6
49	Stochastic quantization and Casimir forces. Europhysics Letters, 2011, 96, 50008.	0.7	4
50	Enhanced Diffusion due to Active Swimmers at a Solid Surface. Physical Review Letters, 2011, 106, 048102.	2.9	178
51	Characterization of the melting transition in two dimensions at vanishing external pressure using molecular dynamics simulations. Physical Review B, 2011, 83, .	1.1	1
52	Energy bursts in vibrated shallow granular systems. , 2011, , .		4
53	Dynamical approach to the Casimir effect. Physical Review E, 2011, 83, 031102.	0.8	12
54	Segregation in quasi-two-dimensional granular systems. New Journal of Physics, 2011, 13, 055018.	1.2	20

#	Article	IF	CITATIONS
55	Sudden Chain Energy Transfer Events in Vibrated Granular Media. Physical Review Letters, 2011, 106, 088001.	2.9	49
56	Brazil nut effect: Influence of friction and jamming on the transition line. , 2009, , .		0
57	Extended event driven molecular dynamics for simulating dense granular matter. European Physical Journal: Special Topics, 2009, 179, 33-41.	1.2	8
58	Competition of Brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture. European Physical Journal: Special Topics, 2009, 179, 207-219.	1.2	33
59	Violation of the action-reaction principle and self-forces induced by nonequilibrium fluctuations. Physical Review E, 2008, 78, 020102.	0.8	25
60	Rise of a Brazil nut: A transition line. Physical Review E, 2008, 78, 031301.	0.8	18
61	Segregation induced by inelasticity in a vibrofluidized granular mixture. Physical Review E, 2008, 77, 061301.	0.8	51
62	Ring approximation at equilibrium: The hard sphere pair correlation function. Physica A: Statistical Mechanics and Its Applications, 2007, 379, 409-416.	1.2	2
63	Generalized Casimir forces in nonequilibrium systems. Physical Review E, 2007, 76, 011113.	0.8	22
64	Casimir forces in granular and other non equilibrium systems. Granular Matter, 2007, 10, 29-36.	1.1	6
65	Approach to a non-equilibrium steady state. Physica A: Statistical Mechanics and Its Applications, 2006, 369, 379-386.	1.2	4
66	Hydrodynamic boundary condition in vibrofluidized granular systems. Physica A: Statistical Mechanics and Its Applications, 2006, 369, 301-308.	1.2	4
67	Fluctuation-Induced Casimir Forces in Granular Fluids. Physical Review Letters, 2006, 96, 178001.	2.9	53
68	Confined suspension jet and long-range hydrodynamic interactions: A destabilization scenario. Physics of Fluids, 2006, 18, 083301.	1.6	4
69	Steady quasi-homogeneous granular gas state. Physica A: Statistical Mechanics and Its Applications, 2005, 356, 54-60.	1.2	7
70	Free surface instability in a confined suspension jet. Physica A: Statistical Mechanics and Its Applications, 2005, 356, 196-201.	1.2	1
71	Dynamics of a suspension confined in a thin cell. Physics of Fluids, 2005, 17, 093103.	1.6	25
72	Friction and convection in a vertically vibrated granular system. Physical Review E, 2005, 72, 011305.	0.8	32

#	Article	IF	CITATIONS
73	Granular systems on a vibrating wall: The kinetic boundary condition. Physical Review E, 2004, 69, 061305.	0.8	15
74	van der Waals normal form for a one-dimensional hydrodynamic model. Physical Review E, 2004, 70, 031302.	0.8	26
75	van der Waals-like transition in fluidized granular matter: hydrodynamic description. Nonlinear Phenomena and Complex Systems, 2004, , 341-352.	0.0	0
76	Temperature inversion in granular fluids under gravity. Physica A: Statistical Mechanics and Its Applications, 2003, 322, 73-80.	1.2	28
77	Granular systems on a vibrating wall: the hydrodynamic boundary condition. Physica A: Statistical Mechanics and Its Applications, 2003, 327, 88-93.	1.2	3
78	van der Waals–Like Transition in Fluidized Granular Matter. Physical Review Letters, 2002, 89, 044301.	2.9	81
79	Statistical mechanics of fluidized granular media: Short-range velocity correlations. Physical Review E, 2001, 63, 041303.	0.8	63
80	Precollisional velocity correlations in a hard-disk fluid with dissipative collisions. Physical Review E, 2001, 64, 031306.	0.8	34
81	Nonlinear analysis of the shearing instability in granular gases. Physical Review E, 2000, 62, 3836-3842.	0.8	26
82	Hydrodynamic theory for granular gases. Physical Review E, 2000, 62, 2521-2530.	0.8	58
83	Departure from Fourier's Law for Fluidized Granular Media. Physical Review Letters, 1999, 83, 5003-5006.	2.9	76
84	Cluster birth–death processes in a vapor at equilibrium. Journal of Chemical Physics, 1999, 110, 7316-7325.	1.2	9
85	Kinetic effects in a non-ideal gas of clusters. Physica A: Statistical Mechanics and Its Applications, 1998, 257, 521-525.	1.2	4
86	Cluster velocity distributions in a vapor at equilibrium. Journal of Chemical Physics, 1998, 108, 8989-8994.	1.2	6
87	Nonideal gas of clusters at equilibrium. Physical Review E, 1997, 56, 2851-2857.	0.8	8
88	Free thermal convection driven by nonlocal effects. Physical Review E, 1995, 52, 4533-4536.	0.8	6
89	Microbial Adhesion on Circular Obstacles: An Optimization Study. Frontiers in Physics, 0, 10, .	1.0	3