Abueliz Modwi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7810376/publications.pdf

Version: 2024-02-01

430874 526287 45 862 18 27 citations h-index g-index papers 45 45 45 557 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Efficient removal of organic dyes by Cr-doped ZnO nanoparticles. Biomass Conversion and Biorefinery, 2024, 14, 4177-4190.	4.6	6
2	Adsorption performance and Kinetics study of Pb(II) by RuO2–ZnO nanocomposite: Construction and Recyclability. International Journal of Environmental Science and Technology, 2022, 19, 327-340.	3.5	15
3	Yttrium oxide-doped ZnO for effective adsorption of basic fuchsin dye: equilibrium, kinetics, and mechanism studies. International Journal of Environmental Science and Technology, 2022, 19, 9901-9914.	3.5	13
4	Mesoporous Sn@TiO2 nanostructures as excellent adsorbent for Ba ions in aqueous solution. Ceramics International, 2022, 48, 5805-5813.	4.8	18
5	Superior removal of dyes by mesoporous MgO/g-C3N4 fabricated through ultrasound method: Adsorption mechanism and process modeling. Environmental Research, 2022, 205, 112543.	7.5	43
6	Impact of Cu lons removal onto MgO nanostructures: adsorption capacity and mechanism. Journal of Materials Science: Materials in Electronics, 2022, 33, 12500-12512.	2.2	10
7	xmins:mmi= http://www.w3.org/1998/Math/Math/ML display= inline id= d1e1601 altimg="si12.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub> <td>3.5</td> <td>12</td>	3.5	12
8	Adsorption behavior of barium ions onto ZnO surfaces: Experiments associated with DFT calculations. Journal of Molecular Structure, 2021, 1223, 128991.	3.6	27
9	Physicochemical and photocatalytic performance of the synthesized RuO2-ZnO photo-composite in the presence of pectinose solution. Environmental Nanotechnology, Monitoring and Management, 2021, 15, 100403.	2.9	3
10	Fabrication of (Y2O3)n–ZnO nanocomposites by high-energy milling as potential photocatalysts. Journal of Materials Science: Materials in Electronics, 2021, 32, 3415-3430.	2.2	13
11	Fabrication of Cr–ZnO photocatalyst by starch-assisted sol–gel method for photodegradation of congo red under visible light. Journal of Materials Science: Materials in Electronics, 2021, 32, 2234-2248.	2.2	19
12	TiO2–ZnO composites fabricated via sonication assisted with gelatin for potential use in Rhodamine B degradation. Journal of Materials Science: Materials in Electronics, 2021, 32, 2471-2485.	2.2	7
13	Efficient photodegradation of azucryl red by copper-doped TiO2 nanoparticles—experimental and modeling studies. Environmental Science and Pollution Research, 2021, 28, 57543-57556.	5. 3	12
14	Exploration of Methylene Blue Degradation over ZnO Nanorods Mechanism using Scavenging Reagents. Oriental Journal of Chemistry, 2021, 37, 609-618.	0.3	7
15	Adsorption Behavior of Congo Red onto Barium-Doped ZnO Nanoparticles: Correlation between Experimental Results and DFT Calculations. Langmuir, 2021, 37, 7285-7294.	3.5	32
16	Impact of Sn ions on structural and electrical description of TiO ₂ nanoparticles. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76, 835-846.	1.5	1
17	Application of Bi12ZnO20 Sillenite as an Efficient Photocatalyst for Wastewater Treatment: Removal of Both Organic and Inorganic Compounds. Materials, 2021, 14, 5409.	2.9	17
18	Boosting unprecedented indigo carmine dye photodegradation via mesoporous MgO@g-C3N4 nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 419, 113467.	3.9	39

#	Article	IF	CITATIONS
19	Mesoporous TiO2@g-C3N4 composite: construction, characterization, and boosting indigo carmine dye destruction. Diamond and Related Materials, 2021, 118, 108491.	3.9	48
20	Dependence of the electrical properties of Cu-doped ZnO nanoparticles decorated by Ag atoms. Zeitschrift Fur Physikalische Chemie, 2021, 235, 745-767.	2.8	7
21	Reduced graphene oxide/spinel ferrite nanocomposite as an efficient adsorbent for the removal of Pb (II) from aqueous solution. Journal of Materials Science: Materials in Electronics, 2021, 32, 28253-28274.	2.2	8
22	Structural and Electrical Characterization of Ba/ZnO Nanoparticles Fabricated by Co-precipitation. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2633-2644.	3.7	26
23	Effect of aluminum loading on structural and morphological characteristics of ZnO nanoparticles for heavy metal ion elimination. Environmental Science and Pollution Research, 2020, 27, 3086-3099.	5.3	20
24	Impact of Hibiscus extract on the structural and activity of sonochemically fabricated ZnO nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 390, 112263.	3.9	18
25	Dependence of the electrical properties of Cu-doped ZnO nanoparticles decorated by Ag atoms. Zeitschrift Fur Physikalische Chemie, 2020, .	2.8	2
26	Photo-degradation of a mixture of dyes using Barium doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 14714-14725.	2.2	20
27	Simplistic Synthesis and Enhanced Photocatalytic Performance of Spherical ZnO Nanoparticles Prepared from Arabinose Solution. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2019, 74, 937-944.	1.5	9
28	Green and sonogreen synthesis of zinc oxide nanoparticles for the photocatalytic degradation of methylene blue in water. Nanotechnology for Environmental Engineering, 2019, 4, 1.	3.3	25
29	Physicochemical behavior of M doped Zn0.95Cu0.05O nanocomposites synthesized by facile sol–gel method. Materials Research Express, 2019, 6, 0850g4.	1.6	2
30	Dependence of phase distribution and magnetic properties of milled and annealed ZnO·Fe2O3 nanostructures as efficient adsorbents of heavy metals. Journal of Materials Science: Materials in Electronics, 2019, 30, 9683-9694.	2.2	5
31	Fabrication and characterization of nanostructured MgO·Fe2O3 composite by mechanical milling as efficient adsorbent of heavy metals. Journal of Alloys and Compounds, 2019, 772, 1030-1039.	5.5	21
32	Silver decorated Cu/ZnO photocomposite: efficient green degradation of malachite. Journal of Materials Science: Materials in Electronics, 2019, 30, 3629-3638.	2.2	18
33	Structural, surface area and FTIR characterization of Zn0.95â^xCu0.05 Fe0.0xO nanocomposites prepared via sol–gel method. Journal of Materials Science: Materials in Electronics, 2018, 29, 2184-2192.	2.2	7
34	Structural and optical characteristic of chalcone doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 2791-2796.	2.2	12
35	Flower Buds Like MgO Nanoparticles: From Characterisation to Indigo Carmine Elimination. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2018, 73, 975-983.	1.5	25
36	Room temperature ferromagnetism in Ni, Fe and Ag co-doped Cu–ZnO nanoparticles: an experimental and first-principles DFT study. Journal of Materials Science: Materials in Electronics, 2018, 29, 14387-14395.	2.2	3

#	Article	IF	CITATIONS
37	Lowering energy band gap and enhancing photocatalytic properties of Cu/ZnO composite decorated by transition metals. Journal of Molecular Structure, 2018, 1173, 1-6.	3.6	51
38	Fast and high efficiency adsorption of Pb(II) ions by Cu/ZnO composite. Materials Letters, 2017, 195, 41-44.	2.6	31
39	Ferromagnetism at room temperature in Zn 0.95 Cu 0.05 O nanoparticles synthesized by sol-gel method. Materials Letters, 2017, 194, 98-101.	2.6	14
40	Efficient Removal of Cobalt from Aqueous Solution by Zinc Oxide Nanoparticles: Kinetic and Thermodynamic Studies. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 72, 409-418.	1.5	21
41	Characterization of optical and morphological properties of chalcone thin films for optoelectronics applications. Optik, 2017, 145, 529-533.	2.9	18
42	Adsorption kinetics and photocatalytic degradation of malachite green (MG) via Cu/ZnO nanocomposites. Journal of Environmental Chemical Engineering, 2017, 5, 5954-5960.	6.7	37
43	Effect of annealing on physicochemical and photocatalytic activity of Cu5% loading on ZnO synthesized by sol–gel method. Journal of Materials Science: Materials in Electronics, 2016, 27, 12974-12984.	2.2	41
44	Preparation and characterization of Ca-doped zinc oxide nanoparticles for heavy metal removal from aqueous solution. MRS Advances, 2016, 1, 3607-3612.	0.9	17
45	Ga-doped ZnO for adsorption of heavy metals from aqueous solution. Materials Science in Semiconductor Processing, 2016, 42, 102-106.	4.0	62