
Takuya Iida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7809751/publications.pdf Version: 2024-02-01

Τλκιινλ Ιισλ

#	Article	IF	CITATIONS
1	Damage-free light-induced assembly of intestinal bacteria with a bubble-mimetic substrate. Communications Biology, 2021, 4, 385.	4.4	18
2	Optical Trapping of Nanocrystals at Oil/Water Interfaces: Implications for Photocatalysis. ACS Applied Nano Materials, 2021, 4, 11743-11752.	5.0	4
3	Near-field transmission and reflection spectroscopy for revealing absorption and scattering characteristics of single silver nanoplates. Journal of Chemical Physics, 2020, 153, 144703.	3.0	6
4	Light-induced assembly of living bacteria with honeycomb substrate. Science Advances, 2020, 6, eaaz5757.	10.3	36
5	Electrical detection of DNA via nanoparticles under light-induced assembly. Japanese Journal of Applied Physics, 2019, 58, SDDK09.	1.5	2
6	Development of bowl-shaped plasmonic substrate for optical assembly based on template of self-assembled microspheres. Japanese Journal of Applied Physics, 2019, 58, SDDK08.	1.5	5
7	Interparticle-Interaction-Mediated Anomalous Acceleration of Nanoparticles under Light-Field with Coupled Orbital and Spin Angular Momentum. Nano Letters, 2019, 19, 4873-4878.	9.1	18
8	Nanotraffic Lights: Rayleigh Scattering Microspectroscopy of Optically Trapped Octahedral Gold Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 23096-23102.	3.1	3
9	Dynamics analysis of nanoparticles optically driven by a Laguerre-Gaussian beam with optical spin. Journal of Physics: Conference Series, 2019, 1220, 012008.	0.4	2
10	Surfactant-Controlled Photothermal Assembly of Nanoparticles and Microparticles for Rapid Concentration Measurement of Microbes. ACS Applied Bio Materials, 2019, 2, 1561-1568.	4.6	26
11	Microflow-mediated optical assembly of nanoparticles with femtogram protein via shrinkage of light-induced bubbles. APL Photonics, 2019, 4, 010802.	5.7	13
12	Stochastic approach to simulation of evaporation-triggered multiple self-assembly of mixed metal nanoparticles and their variable superradiance. Applied Physics Letters, 2018, 112, .	3.3	4
13	Mesoscopic Motion of Optically Trapped Particle Synchronized with Photochromic Reactions of Diarylethene Derivatives. Journal of Physical Chemistry Letters, 2018, 9, 2659-2664.	4.6	19
14	Macroscopically Anisotropic Structures Produced by Light-induced Solvothermal Assembly of Porphyrin Dimers. Scientific Reports, 2018, 8, 11108.	3.3	10
15	Optical properties of nano-hole array with randomly designed surface. , 2018, , .		0
16	Optical Trap-Mediated High-Sensitivity Nanohole Array Biosensors with Random Nanospikes. Journal of Physical Chemistry Letters, 2017, 8, 370-374.	4.6	17
17	Review: Novel sensing strategies for bacterial detection based on active and passive methods driven by external field. Analytica Chimica Acta, 2017, 988, 1-16.	5.4	21
18	Mechanism in External Field-mediated Trapping of Bacteria Sensitive to Nanoscale Surface Chemical Structure. Scientific Reports, 2017, 7, 16651.	3.3	8

Τακυγά Ιιδά

#	Article	IF	CITATIONS
19	Submillimetre Network Formation by Light-induced Hybridization of Zeptomole-level DNA. Scientific Reports, 2016, 6, 37768.	3.3	29
20	Multiple Resonances Induced by Plasmonic Coupling between Gold Nanoparticle Trimers and Hexagonal Assembly of Gold-Coated Polystyrene Microspheres. Journal of Physical Chemistry Letters, 2016, 7, 3652-3658.	4.6	18
21	Development of a rapid bacterial counting method based on photothermal assembling. Optical Materials Express, 2016, 6, 1280.	3.0	30
22	Dynamic control of polarization-inverted modes in three-dimensionally trapped multiple nanogaps. Applied Physics Letters, 2015, 107, 261105.	3.3	4
23	Three-dimensional nano-optical assembly of antenna structures with collective near-field coupling. Applied Physics A: Materials Science and Processing, 2015, 121, 1369-1375.	2.3	0
24	Control of Submillimeter Phase Transition by Collective Photothermal Effect. Journal of Physical Chemistry C, 2014, 118, 18799-18804.	3.1	55
25	Theory for optical assembling of anisotropic nanoparticles by tailored light fields under thermal fluctuations. Research on Chemical Intermediates, 2014, 40, 2303-2313.	2.7	3
26	DNA-Mediated Anomalous Optical Coupling of Heterogeneous Metallic Nanostructures. Journal of Physical Chemistry C, 2014, 118, 7235-7241.	3.1	6
27	Enhanced modulation of scattered light from phase-change nanoparticles by tailored plasmonic mirror image. Applied Physics Letters, 2013, 103, 041108.	3.3	5
28	Multipole Superradiance from Densely Assembled Metallic Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 15247-15252.	3.1	17
29	Selective Optical Assembly of Highly Uniform Nanoparticles by Doughnut-Shaped Beams. Scientific Reports, 2013, 3, 3047.	3.3	47
30	Fluctuation-Mediated Optical Screening of Nanoparticles. Nano Letters, 2012, 12, 5337-5341.	9.1	14
31	Control of Plasmonic Superradiance in Metallic Nanoparticle Assembly by Light-Induced Force and Fluctuations. Journal of Physical Chemistry Letters, 2012, 3, 332-336.	4.6	55
32	Design of Photosensitive Gold Nanoparticles for Biomedical Applications Based on Self-Consistent Optical Response Theory. Journal of Physical Chemistry C, 2011, 115, 19091-19095.	3.1	34
33	Unconventional control of excited states of a dimer molecule by a localized light field between metal nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 980-984.	1.8	26
34	Radiation force mediated by exciton of a carbon nanotube. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 65-68.	0.8	3
35	Theory of nano optical manipulation by designed light fields under excitonic resonance conditions. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 69-72.	0.8	0
36	Theory of light-induced force microscopy to observe collective excited states in quantum-dot-array. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 898-901.	0.8	1

Τακυγά Ιιδά

#	Article	IF	CITATIONS
π			CHAHONS
37	Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: From microscopic to macroscopic descriptions. Physical Review B, 2008, 77, .	3.2	79
38	Force Control between Quantum Dots by Light in Polaritonic Molecule States. Physical Review Letters, 2006, 97, 117402.	7.8	38
39	Force control between nanostructures by coupling of spatially separated polaritons. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3543-3546.	0.8	0
40	Collective effects in radiation force on movable quantum dots. Physica Status Solidi (B): Basic Research, 2006, 243, 3946-3951.	1.5	1
41	Optically induced force between nano-particles irradiated by electronic resonant light. Journal of Luminescence, 2005, 112, 151-155.	3.1	8
42	Theoretical Study of the Optical Manipulation of Semiconductor Nanoparticles under an Excitonic Resonance Condition. Physical Review Letters, 2003, 90, 057403.	7.8	125
43	MICROSCOPIC CALCULATION OF THE RADIATION FORCE EXERTED ON NANO-PARTICLES CONFINING EXCITONS. Nonlinear Optics, Quantum Optics, 2002, 29, 629-634.	0.2	0