
Gregor Thut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7809608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low preâ€stimulus EEG alpha power amplifies visual awareness but not visual sensitivity. European Journal of Neuroscience, 2022, 55, 3125-3140.	2.6	41
2	Tuning alpha rhythms to shape conscious visual perception. Current Biology, 2022, 32, 988-998.e6.	3.9	49
3	Coupling of pupil- and neuronal population dynamics reveals diverse influences of arousal on cortical processing. ELife, 2022, 11, .	6.0	29
4	EEG alpha power predicts the temporal sensitivity of multisensory perception. European Journal of Neuroscience, 2022, 55, 3241-3255.	2.6	9
5	Non-invasive brain stimulation and neuroenhancement. Clinical Neurophysiology Practice, 2022, 7, 146-165.	1.4	51
6	A TMS/EEG protocol for the causal assessment of the functions of the oscillatory brain rhythms in perceptual and cognitive processes. STAR Protocols, 2022, 3, 101435.	1.2	9
7	Training in the practice of noninvasive brain stimulation: Recommendations from an IFCN committee. Clinical Neurophysiology, 2021, 132, 819-837.	1.5	38
8	Top-down control of visual cortex by the frontal eye fields through oscillatory realignment. Nature Communications, 2021, 12, 1757.	12.8	60
9	Parietal alpha tACS shows inconsistent effects on visuospatial attention. PLoS ONE, 2021, 16, e0255424.	2.5	12
10	Predictive entrainment of natural speech through two fronto-motor top-down channels. Language, Cognition and Neuroscience, 2020, 35, 739-751.	1.2	38
11	Vision modulation, plasticity and restoration using non-invasive brain stimulation – An IFCN-sponsored review. Clinical Neurophysiology, 2020, 131, 887-911.	1.5	48
12	Oscillations and Synchrony in Attention. , 2020, , 71-97.		0
13	A New Unifying Account of the Roles of Neuronal Entrainment. Current Biology, 2019, 29, R890-R905.	3.9	257
14	Clinical utility and prospective of TMS–EEG. Clinical Neurophysiology, 2019, 130, 802-844.	1.5	276
15	Frequency and power of human alpha oscillations drift systematically with time-on-task. NeuroImage, 2019, 192, 101-114.	4.2	106
16	The EEG signature of sensory evidence accumulation during decision formation closely tracks subjective perceptual experience. Scientific Reports, 2019, 9, 4949.	3.3	51
17	Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation. Cortex, 2019, 117, 168-181.	2.4	15
18	Stimulus-Driven Brain Rhythms within the Alpha Band: The Attentional-Modulation Conundrum. Journal of Neuroscience, 2019, 39, 3119-3129.	3.6	79

#	Article	IF	CITATIONS
19	Intra- and inter-task reliability of spatial attention measures in healthy older adults. PLoS ONE, 2019, 14, e0226424.	2.5	7
20	Noninvasive Brain Stimulation Techniques Can Modulate Cognitive Processing. Organizational Research Methods, 2019, 22, 116-147.	9.1	19
21	Alpha power gating of early visual information inferred using an iconic memory task. Journal of Vision, 2019, 19, 246d.	0.3	0
22	Prismatic Adaptation Modulates Oscillatory EEG Correlates of Motor Preparation but Not Visual Attention in Healthy Participants. Journal of Neuroscience, 2018, 38, 1189-1201.	3.6	11
23	Trialâ€byâ€ŧrial coâ€variation of preâ€stimulus <scp>EEG</scp> alpha power and visuospatial bias reflects a mixture of stochastic and deterministic effects. European Journal of Neuroscience, 2018, 48, 2566-2584.	2.6	52
24	Orchestration of brain oscillations: principles and functions. European Journal of Neuroscience, 2018, 48, 2385-2388.	2.6	18
25	No changes in parietoâ€occipital alpha during neural phase locking to visual quasiâ€periodic thetaâ€, alphaâ€, and betaâ€band stimulation. European Journal of Neuroscience, 2018, 48, 2551-2565.	2.6	24
26	Decoupling of Early V5 Motion Processing from Visual Awareness: A Matter of Velocity as Revealed by Transcranial Magnetic Stimulation. Journal of Cognitive Neuroscience, 2018, 30, 1517-1531.	2.3	9
27	Representational interactions during audiovisual speech entrainment: Redundancy in left posterior superior temporal gyrus and synergy in left motor cortex. PLoS Biology, 2018, 16, e2006558.	5.6	54
28	Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clinical Neurophysiology, 2017, 128, 843-857.	1.5	211
29	Being First Matters: Topographical Representational Similarity Analysis of ERP Signals Reveals Separate Networks for Audiovisual Temporal Binding Depending on the Leading Sense. Journal of Neuroscience, 2017, 37, 5274-5287.	3.6	31
30	Age-related reduction of hemispheric lateralisation for spatial attention: An EEG study. NeuroImage, 2017, 153, 139-151.	4.2	40
31	Role of the Cerebellum in Adaptation to Delayed Action Effects. Current Biology, 2017, 27, 2442-2451.e3.	3.9	24
32	The role of brain oscillations in predicting self-generated sounds. NeuroImage, 2017, 147, 895-903.	4.2	33
33	Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation. Neurolmage, 2017, 146, 58-70.	4.2	51
34	Inconsistent Effects of Parietal α-tACS on Pseudoneglect across Two Experiments: A Failed Internal Replication. Frontiers in Psychology, 2017, 8, 952.	2.1	56
35	Oscillatory Activities in Neurological Disorders of Elderly: Biomarkers to Target for Neuromodulation. Frontiers in Aging Neuroscience, 2017, 9, 189.	3.4	65
36	No Interaction between tDCS Current Strength and Baseline Performance: A Conceptual Replication. Frontiers in Neuroscience, 2017, 11, 664.	2.8	12

#	Article	IF	CITATIONS
37	Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance. ENeuro, 2017, 4, ENEURO.0182-17.2017.	1.9	145
38	Investigating the neural correlates of automatic attention shifts in electroencephalography. Journal of Vision, 2017, 17, 384.	0.3	0
39	Tracing the Flow of Perceptual Features in an Algorithmic Brain Network. Scientific Reports, 2016, 5, 17681.	3.3	47
40	Information-Based Approaches of Noninvasive Transcranial Brain Stimulation. Trends in Neurosciences, 2016, 39, 782-795.	8.6	191
41	Behavioural evidence for separate mechanisms of audiovisual temporal binding as a function of leading sensory modality. European Journal of Neuroscience, 2016, 43, 1561-1568.	2.6	30
42	Age-related changes in post-movement beta synchronization during a selective inhibition task. Experimental Brain Research, 2016, 234, 3543-3553.	1.5	5
43	Causal evidence that intrinsic beta-frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS. NeuroImage, 2016, 126, 120-130.	4.2	75
44	The multisensory function of the human primary visual cortex. Neuropsychologia, 2016, 83, 161-169.	1.6	152
45	Lip movements entrain the observers' low-frequency brain oscillations to facilitate speech intelligibility. ELife, 2016, 5, .	6.0	130
46	Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity. Frontiers in Cellular Neuroscience, 2015, 9, 477.	3.7	154
47	Intra- and Inter-Task Reliability of Spatial Attention Measures in Pseudoneglect. PLoS ONE, 2015, 10, e0138379.	2.5	46
48	Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: Evidence from biparietal tDCS influence on lateralized attention bias. Cortex, 2015, 69, 152-165.	2.4	127
49	Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment. Brain Stimulation, 2015, 8, 499-508.	1.6	423
50	Frontal Top-Down Signals Increase Coupling of Auditory Low-Frequency Oscillations to Continuous Speech in Human Listeners. Current Biology, 2015, 25, 1649-1653.	3.9	309
51	Attention Modulates TMS-Locked Alpha Oscillations in the Visual Cortex. Journal of Neuroscience, 2015, 35, 14435-14447.	3.6	161
52	The implications of state-dependent tDCS effects in aging: Behavioural response is determined by baseline performance. Neuropsychologia, 2015, 74, 108-119.	1.6	105
53	The contribution of TMS–EEG coregistration in the exploration of the human cortical connectome. Neuroscience and Biobehavioral Reviews, 2015, 49, 114-124.	6.1	168
54	Visual Benefits in Apparent Motion Displays: Automatically Driven Spatial and Temporal Anticipation Are Partially Dissociated. PLoS ONE, 2015, 10, e0144082.	2.5	5

#	Article	IF	CITATIONS
55	A rightward shift in the visuospatial attention vector with healthy aging. Frontiers in Aging Neuroscience, 2014, 6, 113.	3.4	56
56	Post-switching beta synchronization reveals concomitant sensory reafferences and active inhibition processes. Behavioural Brain Research, 2014, 271, 365-373.	2.2	8
57	Modulating Brain Oscillations to Drive Brain Function. PLoS Biology, 2014, 12, e1002032.	5.6	13
58	Prefrontal Control over Motor Cortex Cycles at Beta Frequency during Movement Inhibition. Current Biology, 2014, 24, 2940-2945.	3.9	122
59	Effects of individual alpha rTMS applied to the auditory cortex and its implications for the treatment of chronic tinnitus. Human Brain Mapping, 2014, 35, 14-29.	3.6	24
60	Multisensory Integration: Flexible Use of General Operations. Neuron, 2014, 81, 1240-1253.	8.1	237
61	Dissociated α-Band Modulations in the Dorsal and Ventral Visual Pathways in Visuospatial Attention and Perception. Cerebral Cortex, 2014, 24, 550-561.	2.9	112
62	On the neural origin of pseudoneglect: EEG-correlates of shifts in line bisection performance with manipulation of line length. NeuroImage, 2014, 86, 370-380.	4.2	63
63	Hearing brighter: Changing in-depth visual perception through looming sounds. Cognition, 2014, 132, 312-323.	2.2	21
64	Electroencephalography During Transcranial Magnetic Stimulation: Current Modus Operandi. Neuromethods, 2014, , 197-232.	0.3	6
65	Spatial attention: Differential shifts in pseudoneglect direction with time-on-task and initial bias support the idea of observer subtypes. Neuropsychologia, 2013, 51, 2747-2756.	1.6	49
66	The Contributions of Sensory Dominance and Attentional Bias to Cross-modal Enhancement of Visual Cortex Excitability. Journal of Cognitive Neuroscience, 2013, 25, 1122-1135.	2.3	31
67	Stimulus- and state-dependence of systematic bias in spatial attention: Additive effects of stimulus-size and time-on-task. Cortex, 2013, 49, 827-836.	2.4	51
68	Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain. PLoS Biology, 2013, 11, e1001752.	5.6	502
69	Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation. PLoS ONE, 2013, 8, e60035.	2.5	178
70	Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain. PLoS Biology, 2013, 11, e1001752.	5.6	5
71	Looming Signals Reveal Synergistic Principles of Multisensory Integration. Journal of Neuroscience, 2012, 32, 1171-1182.	3.6	93
72	Formation of automatic letter–colour associations in non-synaesthetes through likelihood manipulation of letter–colour pairings. Neuropsychologia, 2012, 50, 3641-3652.	1.6	20

#	Article	IF	CITATIONS
73	The Functional Importance of Rhythmic Activity in the Brain. Current Biology, 2012, 22, R658-R663.	3.9	329
74	Causal implication by rhythmic transcranial magnetic stimulation of alpha frequency in featureâ€based local vs. global attention. European Journal of Neuroscience, 2012, 35, 968-974.	2.6	71
75	Sounds Reset Rhythms of Visual Cortex and Corresponding Human Visual Perception. Current Biology, 2012, 22, 807-813.	3.9	213
76	Brain activity underlying visual perception and attention as inferred from TMS–EEC: A review. Brain Stimulation, 2012, 5, 124-129.	1.6	42
77	Accessing Cortical Connectivity Using TMS: EEG Co-registration. , 2012, , 93-110.		1
78	Cracking the Code of Oscillatory Activity. PLoS Biology, 2011, 9, e1001064.	5.6	126
79	Entrainment of Perceptually Relevant Brain Oscillations by Non-Invasive Rhythmic Stimulation of the Human Brain. Frontiers in Psychology, 2011, 2, 170.	2.1	451
80	Alphaâ€generation as basic responseâ€signature to transcranial magnetic stimulation (TMS) targeting the human resting motor cortex: A TMS/EEG coâ€registration study. Psychophysiology, 2011, 48, 1381-1389.	2.4	78
81	Rhythmic TMS over Parietal Cortex Links Distinct Brain Frequencies to Global versus Local Visual Processing. Current Biology, 2011, 21, 334-337.	3.9	156
82	Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures. Current Biology, 2011, 21, 1176-1185.	3.9	462
83	Effects of Paired-pulse Transcranial Magnetic Stimulation of the Motor Cortex on Perception of Experimentally Induced Pain. Clinical Journal of Pain, 2010, 26, 617-623.	1.9	4
84	Combining TMS and EEG Offers New Prospects in Cognitive Neuroscience. Brain Topography, 2010, 22, 249-256.	1.8	182
85	A Review of Combined TMS-EEG Studies to Characterize Lasting Effects of Repetitive TMS and Assess Their Usefulness in Cognitive and Clinical Neuroscience. Brain Topography, 2010, 22, 219-232.	1.8	334
86	Effects of Repetitive Transcranial Magnetic Stimulation on Spike Pattern and Topography in Patients with Focal Epilepsy. Brain Topography, 2010, 22, 267-280.	1.8	17
87	Integrating TMS with EEC: How and What For?. Brain Topography, 2010, 22, 215-218.	1.8	51
88	Auditory–Visual Multisensory Interactions in Humans: Timing, Topography, Directionality, and Sources. Journal of Neuroscience, 2010, 30, 12572-12580.	3.6	124
89	The Neural Substrates and Timing of Top–Down Processes during Coarse-to-Fine Categorization of Visual Scenes: A Combined fMRI and ERP Study. Journal of Cognitive Neuroscience, 2010, 22, 2768-2780.	2.3	123
90	On the Role of Prestimulus Alpha Rhythms over Occipito-Parietal Areas in Visual Input Regulation: Correlation or Causation?. Journal of Neuroscience, 2010, 30, 8692-8697.	3.6	519

#	Article	IF	CITATIONS
91	Selective integration of auditory-visual looming cues by humans. Neuropsychologia, 2009, 47, 1045-1052.	1.6	101
92	Preperceptual and Stimulus-Selective Enhancement of Low-Level Human Visual Cortex Excitability by Sounds. Current Biology, 2009, 19, 1799-1805.	3.9	147
93	M1 contributes to the intrinsic but not the extrinsic components of motor-skills. Cortex, 2009, 45, 1058-1064.	2.4	22
94	The costs of crossing paths and switching tasks between audition and vision. Brain and Cognition, 2009, 69, 47-55.	1.8	36
95	New insights into rhythmic brain activity from TMS–EEG studies. Trends in Cognitive Sciences, 2009, 13, 182-189.	7.8	346
96	Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 2009, 120, 2008-2039.	1.5	4,364
97	A bias for posterior α-band power suppression versus enhancement during shifting versus maintenance of spatial attention. NeuroImage, 2009, 44, 190-199.	4.2	194
98	Spontaneous Fluctuations in Posterior Â-Band EEG Activity Reflect Variability in Excitability of Human Visual Areas. Cerebral Cortex, 2008, 18, 2010-2018.	2.9	628
99	Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. NeuroReport, 2008, 19, 203-208.	1.2	246
100	Visual Phosphene Perception Modulated by Subthreshold Crossmodal Sensory Stimulation. Journal of Neuroscience, 2007, 27, 4178-4181.	3.6	67
101	Occipital Transcranial Magnetic Stimulation Has Opposing Effects on Visual and Auditory Stimulus Detection: Implications for Multisensory Interactions. Journal of Neuroscience, 2007, 27, 11465-11472.	3.6	157
102	A glimpse into your vision. Human Brain Mapping, 2007, 28, 614-624.	3.6	15
103	Mechanisms of selective inhibition in visual spatial attention are indexed by ?-band EEG synchronization. European Journal of Neuroscience, 2007, 25, 603-610.	2.6	523
104	Inducing out-of-body experiences. , 2007, , 425-439.		8
105	Very high frequency oscillations (VHFO) as a predictor of movement intentions. NeuroImage, 2006, 32, 170-179.	4.2	48
106	Homeostatic effects of plasma valproate levels on corticospinal excitability changes induced by 1Hz rTMS in patients with juvenile myoclonic epilepsy. Clinical Neurophysiology, 2006, 117, 1217-1227.	1.5	50
107	Electroencephalographic recording during transcranial magnetic stimulation in humans and animals. Clinical Neurophysiology, 2006, 117, 1870-1875.	1.5	68
108	Â-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection. Journal of Neuroscience, 2006, 26, 9494-9502.	3.6	1,303

#	Article	IF	CITATIONS
109	Effect of low-frequency transcranial magnetic stimulation on an affective go/no-go task in patients with major depression: Role of stimulation site and depression severity. Psychiatry Research, 2006, 141, 1-13.	3.3	54
110	Modulation of steady-state auditory evoked potentials by cerebellar rTMS. Experimental Brain Research, 2006, 175, 702-709.	1.5	19
111	A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Annals of Neurology, 2006, 60, 447-455.	5.3	219
112	Arm folding, hand clasping, and Luria's concept of "latent left-handedness― Laterality, 2006, 11, 15-32.	1.0	11
113	Neural Basis of Embodiment: Distinct Contributions of Temporoparietal Junction and Extrastriate Body Area. Journal of Neuroscience, 2006, 26, 8074-8081.	3.6	414
114	Left prefrontal repetitive transcranial magnetic stimulation impairs performance in affective go/no-go task. NeuroReport, 2005, 16, 615-619.	1.2	18
115	Prediction of response speed by anticipatory high-frequency (gamma band) oscillations in the human brain. Human Brain Mapping, 2005, 24, 50-58.	3.6	123
116	A new device and protocol for combining TMS and online recordings of EEG and evoked potentials. Journal of Neuroscience Methods, 2005, 141, 207-217.	2.5	121
117	Linking Out-of-Body Experience and Self Processing to Mental Own-Body Imagery at the Temporoparietal Junction. Journal of Neuroscience, 2005, 25, 550-557.	3.6	525
118	Dorsal Posterior Parietal rTMS Affects Voluntary Orienting of Visuospatial Attention. Cerebral Cortex, 2005, 15, 628-638.	2.9	92
119	Two electrophysiological stages of spatial orienting towards fearful faces: early temporo-parietal activation preceding gain control in extrastriate visual cortex. NeuroImage, 2005, 26, 149-163.	4.2	151
120	Actual and mental motor preparation and execution: a spatiotemporal ERP study. Experimental Brain Research, 2004, 159, 389-399.	1.5	82
121	Feeling by Sight or Seeing by Touch?. Neuron, 2004, 42, 173-179.	8.1	183
122	Face versus non-face object perception and the â€~other-race' effect: a spatio-temporal event-related potential study. Clinical Neurophysiology, 2003, 114, 515-528.	1.5	147
123	Effects of single-pulse transcranial magnetic stimulation (TMS) on functional brain activity: a combined event-related TMS and evoked potential study. Clinical Neurophysiology, 2003, 114, 2071-2080.	1.5	82
124	Differential effects of low-frequency rTMS at the occipital pole on visual-induced alpha desynchronization and visual-evoked potentials. NeuroImage, 2003, 18, 334-347.	4.2	72
125	Hands, Arms, and Minds: Interactions Between Posture and Thought. Journal of Clinical and Experimental Neuropsychology, 2003, 25, 1000-1010.	1.3	19
126	Segregated Processing of Auditory Motion and Auditory Location: An ERP Mapping Study. NeuroImage, 2002, 16, 76-88.	4.2	92

#	Article	IF	CITATIONS
127	Motor control and cerebral hemispheric specialization in highly qualified judo wrestlers. Neuropsychologia, 2002, 40, 1209-1219.	1.6	59
128	Space-oriented segmentation and 3-dimensional source reconstruction of ictal EEG patterns. Clinical Neurophysiology, 2001, 112, 688-697.	1.5	41
129	Electric source imaging of human brain functions. Brain Research Reviews, 2001, 36, 108-118.	9.0	225
130	The time course of semantic category processing in the cerebral hemispheres: an electrophysiological study. Cognitive Brain Research, 2001, 10, 251-264.	3.0	30
131	Location of the human frontal eye field as defined by electrical cortical stimulation. NeuroReport, 2000, 11, 1907-1913.	1.2	117
132	Visually induced activity in human frontal motor areas during simple visuomotor performance. NeuroReport, 2000, 11, 2843-2848.	1.2	27
133	Internally driven vs. externally cued movement selection: a study on the timing of brain activity. Cognitive Brain Research, 2000, 9, 261-269.	3.0	49
134	Temporal and spatial determination of EEG-seizure onset in the frequency domain. Clinical Neurophysiology, 2000, 111, 763-772.	1.5	57
135	Evidence for interhemispheric motor-level transfer in a simple reaction time task: an EEG study. Experimental Brain Research, 1999, 128, 256-261.	1.5	33
136	Visual activity in the human frontal eye field. NeuroReport, 1999, 10, 925-930.	1.2	73
137	Activation of the human brain by monetary reward. NeuroReport, 1997, 8, 1225-1228.	1.2	246
138	Intermanual transfer of training: blood flow correlates in the human brain. Behavioural Brain Research, 1997, 89, 129-134.	2.2	15
139	What is the role of the corpus callosum in intermanual transfer of motor skills? A study of three cases with callosal pathology. Experimental Brain Research, 1997, 113, 365-370.	1.5	33
140	Intermanual transfer of proximal and distal motor engrams in humans. Experimental Brain Research, 1996, 108, 321-7.	1.5	101
141	Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance, Frontiers in Neuroscience, 0, 16	2.8	13