Liuping Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7809312/publications.pdf Version: 2024-02-01

LUDING FAN

#	Article	IF	CITATIONS
1	Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum. Carbohydrate Polymers, 2012, 87, 1849-1854.	10.2	179
2	Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus. Carbohydrate Polymers, 2012, 90, 870-874.	10.2	128
3	Isolation, purification and structure of a new water-soluble polysaccharide from Zizyphus jujuba cv. Jinsixiaozao. Carbohydrate Polymers, 2011, 83, 477-482.	10.2	123
4	Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy. Science of the Total Environment, 2020, 742, 140429.	8.0	112
5	Five individual polyphenols as tyrosinase inhibitors: Inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chemistry, 2019, 297, 124910.	8.2	104
6	Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices. Food Chemistry, 2020, 305, 125477.	8.2	95
7	Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions. International Journal of Biological Macromolecules, 2020, 149, 617-626.	7.5	71
8	Screening of a functional polysaccharide from Zizyphus Jujuba cv. Jinsixiaozao and its property. International Journal of Biological Macromolecules, 2011, 49, 255-259.	7.5	69
9	Modification of functional properties of perilla protein isolate by high-intensity ultrasonic treatment and the stability of o/w emulsion. Food Chemistry, 2022, 368, 130848.	8.2	62
10	Effect of guar gum with glycerol coating on the properties and oil absorption of fried potato chips. Food Hydrocolloids, 2016, 54, 211-219.	10.7	57
11	Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Critical Reviews in Food Science and Nutrition, 2022, 62, 1427-1452.	10.3	56
12	Digestible indispensable amino acid scores of nine cooked cereal grains. British Journal of Nutrition, 2019, 121, 30-41.	2.3	54
13	Effect of ultrasound treatment on microbial inhibition and quality maintenance of green asparagus during cold storage. Ultrasonics Sonochemistry, 2019, 58, 104631.	8.2	52
14	Effects of Initial Moisture Content on the Oil Absorption Behavior of Potato Chips During Frying Process. Food and Bioprocess Technology, 2016, 9, 331-340.	4.7	48
15	The description of oil absorption behavior of potato chips during the frying. LWT - Food Science and Technology, 2018, 96, 119-126.	5.2	46
16	Understanding the combined effect and inhibition mechanism of 4-hydroxycinnamic acid and ferulic acid acid and ferulic acid as tyrosinase inhibitors. Food Chemistry, 2021, 352, 129369.	8.2	46
17	Effect of Drying Methods on the Microstructure, Bioactivity Substances, and Antityrosinase Activity of <i>Asparagus</i> Stems. Journal of Agricultural and Food Chemistry, 2019, 67, 1537-1545.	5.2	44
18	Effects of ultrasound treatment on the starch properties and oil absorption of potato chips. Ultrasonics Sonochemistry, 2021, 70, 105347.	8.2	39

LIUPING FAN

#	Article	IF	CITATIONS
19	Effects of ultrasonic conditions on the interfacial property and emulsifying property of cellulose nanoparticles from ginkgo seed shells. Ultrasonics Sonochemistry, 2021, 70, 105335.	8.2	38
20	Modulating in vitro gastrointestinal digestion of nanocellulose-stabilized pickering emulsions by altering cellulose lengths. Food Hydrocolloids, 2021, 118, 106738.	10.7	33
21	In vitro inhibitory effects of polyphenols from Tartary buckwheat on xanthine oxidase: Identification, inhibitory activity, and action mechanism. Food Chemistry, 2022, 379, 132100.	8.2	33
22	Evaluation of anticancer activities of Poria cocos ethanol extract in breast cancer: In vivo and in vitro, identification and mechanism. Journal of Ethnopharmacology, 2020, 257, 112851.	4.1	30
23	Effects of frying temperature and pore profile on the oil absorption behavior of fried potato chips. Food Chemistry, 2021, 345, 128832.	8.2	30
24	Evaluation of the composition of Chinese bayberry wine and its effects on the color changes during storage. Food Chemistry, 2019, 276, 451-457.	8.2	29
25	Effect of Guar Gum with Sorbitol Coating on the Properties and Oil Absorption of French Fries. International Journal of Molecular Sciences, 2017, 18, 2700.	4.1	26
26	The effect of Poria cocos ethanol extract on the intestinal barrier function and intestinal microbiota in mice with breast cancer. Journal of Ethnopharmacology, 2021, 266, 113456.	4.1	26
27	Drying methods influence the physicochemical and functional properties of seed-used pumpkin. Food Chemistry, 2022, 369, 130937.	8.2	26
28	A novel process for asparagus polyphenols utilization by ultrasound assisted adsorption and desorption using resins. Ultrasonics Sonochemistry, 2020, 63, 104920.	8.2	24
29	Recent advances on formation mechanism and functionality of chitosan-based conjugates and their application in o/w emulsion systems: A review. Food Chemistry, 2022, 380, 131838.	8.2	24
30	The Nutritional Composition of Maca in Hypocotyls (<i>Lepidium meyenii</i> Walp.) Cultivated in Different Regions of China. Journal of Food Quality, 2017, 2017, 1-8.	2.6	23
31	Interfacial properties of cellulose nanoparticles with different lengths from ginkgo seed shells. Food Hydrocolloids, 2020, 109, 106121.	10.7	23
32	Effect of oil surface activity on oil absorption behavior of potato strips during frying process. Food Chemistry, 2021, 365, 130427.	8.2	23
33	Supercritical CO2 Fluid Extraction of Elaeagnus mollis Diels Seed Oil and Its Antioxidant Ability. Molecules, 2019, 24, 911.	3.8	20
34	Oil Absorption of Potato Slices Preâ€Dried by Three Kinds of Methods. European Journal of Lipid Science and Technology, 2018, 120, 1700382.	1.5	18
35	Effect of organic acid on cyanidin-3-O-glucoside oxidation mediated by iron in model Chinese bayberry wine. Food Chemistry, 2020, 310, 125980.	8.2	18
36	Effect of pore characteristics on oil absorption behavior during frying of potato chips. Innovative Food Science and Emerging Technologies, 2020, 66, 102508.	5.6	18

LIUPING FAN

#	Article	IF	CITATIONS
37	Solubility and emulsifying properties of perilla protein isolate: Improvement by phosphorylation in the presence of sodium tripolyphosphate and sodium trimetaphosphate. Food Chemistry, 2022, 382, 132252.	8.2	18
38	Flos Sophorae Immaturus: Phytochemistry, bioactivities, and its potential applications. Food Reviews International, 2023, 39, 3185-3203.	8.4	18
39	Dehydration of crude protein from Ginkgo biloba L. by microwave freeze drying. International Journal of Biological Macromolecules, 2012, 50, 1008-1010.	7.5	17
40	Effects of different packaging systems and storage temperatures on the physical and chemical quality of dried mango slices. LWT - Food Science and Technology, 2020, 121, 108981.	5.2	16
41	Ethyl cellulose particles loaded with α-tocopherol for inhibiting thermal oxidation of soybean oil. Carbohydrate Polymers, 2021, 252, 117169.	10.2	16
42	New insights into food O/W emulsion gels: Strategies of reinforcing mechanical properties and outlook of being applied to food 3D printing. Critical Reviews in Food Science and Nutrition, 2023, 63, 1564-1586.	10.3	16
43	High-internal-phase pickering emulsions stabilized by ultrasound-induced nanocellulose hydrogels. Food Hydrocolloids, 2022, 125, 107395.	10.7	16
44	Evaluation of physical stability of high pressure homogenization treatment cloudy ginkgo beverages. LWT - Food Science and Technology, 2019, 111, 31-38.	5.2	15
45	Effects of preliminary treatment by ultrasonic and convective air drying on the properties and oil absorption of potato chips. Ultrasonics Sonochemistry, 2021, 74, 105548.	8.2	15
46	Simple Strategy Preparing Cyclodextrin Carboxylate as a Highly Effective Carrier for Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2021, 69, 11006-11014.	5.2	15
47	The Composition Analysis of Maca (<i>Lepidium meyenii</i> Walp.) from Xinjiang and Its Antifatigue Activity. Journal of Food Quality, 2017, 2017, 1-7.	2.6	14
48	Enhancing the antityrosinase activity of saponins and polyphenols from Asparagus by hot air coupled with microwave treatments. LWT - Food Science and Technology, 2020, 124, 109174.	5.2	14
49	Comparative studies on the stabilization of Flos Sophorae Immaturus beverages by various hydrocolloids. LWT - Food Science and Technology, 2020, 123, 109117.	5.2	14
50	Relationship between crust characteristics and oil uptake of potato strips with hot-air pre-drying during frying process. Food Chemistry, 2021, 360, 130045.	8.2	14
51	In vitro xanthine oxidase inhibitory properties of Flos Sophorae Immaturus and potential mechanisms. Food Bioscience, 2022, 47, 101711.	4.4	14
52	Enhancing drying efficiency and quality of seed-used pumpkin using ultrasound, freeze-thawing and blanching pretreatments. Food Chemistry, 2022, 384, 132496.	8.2	14
53	New insights into antityrosinase capacity and polyphenols of asparagus during hydrothermal treatments. Food Chemistry, 2020, 326, 126968.	8.2	12
54	Gac (Momordica cochinchinensis Spreng) fruit: A functional food and medicinal resource. Journal of Functional Foods, 2019, 62, 103512.	3.4	11

Liuping Fan

#	Article	IF	CITATIONS
55	Improving the bioactive ingredients and functions of asparagus from efficient to emerging processing technologies: A review. Food Chemistry, 2021, 358, 129903.	8.2	11
56	The inhibition mechanisms between asparagus polyphenols after hydrothermal treatment and tyrosinase: A circular dichroism spectrum, fluorescence, and molecular docking study. Food Bioscience, 2022, 48, 101790.	4.4	11
57	Effects of Different Processing Methods on the Antioxidant Activity of 6 Cultivars of Foxtail Millet. Journal of Food Quality, 2017, 2017, 1-9.	2.6	10
58	Ultrasound and heating treatments improve the antityrosinase ability of polyphenols. Food Chemistry, 2020, 317, 126415.	8.2	10
59	Improving the quality and reducing oil absorption of fried potato chips by ultrasound pretreatment. LWT - Food Science and Technology, 2021, 148, 111763.	5.2	10
60	Quality changes in fresh-cut asparagus with ultrasonic-assisted washing combined with cinnamon essential oil fumigation. Postharvest Biology and Technology, 2022, 187, 111873.	6.0	10
61	Improvement in physical and thermal stability of cloudy ginkgo beverage during autoclave sterilization: Effects of microcrystalline cellulose and gellan gum. LWT - Food Science and Technology, 2021, 135, 110062.	5.2	9
62	Optimization of fermentation conditions for Chinese bayberry wine by response surface methodology and its qualities. Journal of the Institute of Brewing, 2016, 122, 763-771.	2.3	8
63	Synthesis of polyethylene glycol functional bonded silica gel for selective recognition and separation of α-cyclodextrin. Journal of Chromatography A, 2021, 1639, 461917.	3.7	7
64	Reduction of oil absorption during frying. Lipid Technology, 2015, 27, 203-205.	0.3	5
65	Antityrosinase and antioxidant activity of asparagus and its inhibition on B16F10 melanoma cells before and after hydrothermal treatment. Food Bioscience, 2021, 41, 101026.	4.4	5
66	Effects of different drying methods on the storage stability of barley grass powder. Journal of the Science of Food and Agriculture, 2021, 102, 1076.	3.5	5
67	Degradation of cyanidin-3-O-glucoside induced by antioxidant compounds in model Chinese bayberry wine: Kinetic studies and mechanisms. Food Chemistry, 2022, 373, 131426.	8.2	4
68	Deep learning in food science: An insight in evaluating Pickering emulsion properties by droplets classification and quantification via object detection algorithm. Advances in Colloid and Interface Science, 2022, 304, 102663.	14.7	4
69	Effects of combined drying methods on physicochemical and rheological properties of instant Tremella fuciformis soup. Food Chemistry, 2022, 396, 133644.	8.2	4
70	Effect of package oxygen on color, color-related compounds, and volatile composition of Chinese bayberry wine after bottling. LWT - Food Science and Technology, 2020, 128, 109430.	5.2	3
71	Study on the antioxidative mechanism of tocopherol loaded ethyl cellulose particles in thermal-oxidized soybean oil. Carbohydrate Polymers, 2022, 276, 118734.	10.2	3
72	Flavor and compositional analysis of macadamia nuts during longâ€ŧerm storage. Journal of Food Processing and Preservation, 2022, 46, .	2.0	3