Alain-Pierre Gadeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7809232/publications.pdf

Version: 2024-02-01

186265 233421 2,153 62 28 citations h-index papers

g-index 66 66 66 3337 docs citations times ranked citing authors all docs

45

#	Article	IF	CITATIONS
1	Osteopontin overexpression is associated with arterial smooth muscle cell proliferation in vitro Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1993, 13, 120-125.	3.9	131
2	Extracellular Nucleotides Induce Arterial Smooth Muscle Cell Migration Via Osteopontin. Circulation Research, 2001, 89, 772-778.	4.5	110
3	Activation function 2 (AF2) of estrogen receptor- \hat{l}_{\pm} is required for the atheroprotective action of estradiol but not to accelerate endothelial healing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13311-13316.	7.1	110
4	Chemoattractive Activity of Sonic Hedgehog in the Adult Subventricular Zone Modulates the Number of Neural Precursors Reaching the Olfactory Bulb. Stem Cells, 2008, 26, 2311-2320.	3.2	106
5	P2Y1, P2Y2, P2Y4, and P2Y6 receptors are coupled to Rho and Rho kinase activation in vascular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1751-H1761.	3.2	99
6	Extracellular Adenosine Induces Apoptosis of Human Arterial Smooth Muscle Cells via A _{2b} -Purinoceptor. Circulation Research, 2000, 86, 76-85.	4. 5	90
7	Osteopontin expression in normal and fibrotic liver. Altered liver healing in osteopontin-deficient mice. Journal of Hepatology, 2006, 44, 383-390.	3.7	79
8	Time Course of Osteopontin, Osteocalcin, and Osteonectin Accumulation and Calcification After Acute Vessel Wall Injury. Journal of Histochemistry and Cytochemistry, 2001, 49, 79-86.	2.5	74
9	Overexpression of the P2Y 2 Purinoceptor in Intimal Lesions of the Rat Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 3602-3610.	2.4	64
10	Nucleotide receptor P2u partially mediates ATP-induced cell cycle progression of aortic smooth muscle cells., 1996, 166, 57-65.		62
11	Sonic hedgehog mediates a novel pathway of PDGF-BB–dependent vessel maturation. Blood, 2014, 123, 2429-2437.	1.4	61
12	Nucleotide Receptors Involved in UTP-Induced Rat Arterial Smooth Muscle Cell Migration. Circulation Research, 2002, 90, 678-681.	4.5	59
13	Bone sialoprotein, but not osteopontin, deficiency impairs the mineralization of regenerating bone during cortical defect healing. Bone, 2010, 46, 447-452.	2.9	53
14	Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes. Cardiovascular Research, 2016, 109, 217-227.	3.8	51
15	Â-adrenergic relaxation in pulmonary arteries: preservation of the endothelial nitric oxide-dependent Â2 component in pulmonary hypertension. Cardiovascular Research, 2007, 77, 202-210.	3.8	48
16	Osteopontin Expression in Cardiomyocytes Induces Dilated Cardiomyopathy. Circulation: Heart Failure, 2010, 3, 431-439.	3.9	46
17	Desert Hedgehog Promotes Ischemia-Induced Angiogenesis by Ensuring Peripheral Nerve Survival. Circulation Research, 2013, 112, 762-770.	4.5	45
18	Induction of cell cycle-dependent genes during cell cycle progression of arterial smooth muscle cells in culture. Journal of Cellular Physiology, 1991, 146, 356-361.	4.1	42

#	Article	IF	Citations
19	Intra-articular Injection of Mesenchymal Stem Cells and Platelet-Rich Plasma to Treat Patellofemoral Osteoarthritis: Preliminary Results of a Long-Term Pilot Study. Journal of Vascular and Interventional Radiology, 2017, 28, 1708-1713.	0.5	41
20	Restoring Endothelial Function by Targeting Desert Hedgehog Downstream of Klf2 Improves Critical Limb Ischemia in Adults. Circulation Research, 2018, 123, 1053-1065.	4.5	41
21	Autocrine expression of osteopontin contributes to PDGF-mediated arterial smooth muscle cell migration. Cardiovascular Research, 2007, 75, 738-747.	3.8	40
22	UTP Induces Osteopontin Expression through a Coordinate Action of NFκB, Activator Protein-1, and Upstream Stimulatory Factor in Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 2005, 280, 2708-2713.	3.4	39
23	Osteopontin: A Promising Therapeutic Target in Cardiac Fibrosis. Cells, 2019, 8, 1558.	4.1	39
24	Osteopontin stimulates apoptosis in adult cardiac myocytes via the involvement of CD44 receptors, mitochondrial death pathway, and endoplasmic reticulum stress. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1182-H1191.	3.2	38
25	AP-1 Is Involved in UTP-Induced Osteopontin Expression in Arterial Smooth Muscle Cells. Circulation Research, 2003, 93, 674-681.	4.5	36
26	Estradiol accelerates endothelial healing through the retrograde commitment of uninjured endothelium. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2822-H2830.	3.2	35
27	Hedgehog-Dependent Regulation of Angiogenesis and Myogenesis Is Impaired in Aged Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2858-2866.	2.4	33
28	Probable insensitivity of mollicutes to rifampin and characterization of spiroplasmal DNA-dependent RNA polymerase. Journal of Bacteriology, 1986, 166, 824-828.	2.2	32
29	CREB Mediates UTP-Directed Arterial Smooth Muscle Cell Migration and Expression of the Chemotactic Protein Osteopontin via Its Interaction with Activator Protein-1 Sites. Circulation Research, 2007, 100, 1292-1299.	4.5	30
30	Gli3 Regulation of Myogenesis Is Necessary for Ischemia-Induced Angiogenesis. Circulation Research, 2013, 113, 1148-1158.	4.5	30
31	Ca ²⁺ -Activated K ⁺ Channel–3.1 Blocker TRAM-34 Attenuates Airway Remodeling and Eosinophilia in a Murine Asthma Model. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 212-219.	2.9	30
32	Cell cycle dependent gene expression in quiescent stimulated and asynchronously cycling arterial smooth muscle cells in culture. Journal of Cellular Physiology, 1992, 150, 493-500.	4.1	29
33	Targeting PI3K \hat{I}^3 activity decreases vascular trauma-induced intimal hyperplasia through modulation of the Th1 response. Journal of Experimental Medicine, 2014, 211, 1779-1792.	8.5	28
34	Understanding the oestrogen action in experimental and clinical atherosclerosis. Fundamental and Clinical Pharmacology, 2006, 20, 539-548.	1.9	25
35	The Estrogen Effects on Endothelial Repair and Mitogen-Activated Protein Kinase Activation Are Abolished in Endothelial Nitric-Oxide (NO) Synthase Knockout Mice, but Not by NO Synthase Inhibition by N-Nitro-l-arginine Methyl Ester. American Journal of Pathology, 2008, 172, 830-838.	3.8	24
36	Blood–brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. PLoS Biology, 2020, 18, e3000946.	5.6	24

#	Article	IF	CITATIONS
37	Endogenous Sonic Hedgehog limits inflammation and angiogenesis in the ischaemic skeletal muscle of mice. Cardiovascular Research, 2018, 114, 759-770.	3.8	22
38	Estrogen-Stimulated Endothelial Repair Requires Osteopontin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2131-2136.	2.4	19
39	Biopterin Metabolism and eNOS Expression during Hypoxic Pulmonary Hypertension in Mice. PLoS ONE, 2013, 8, e82594.	2.5	19
40	A new reliable, transposable and cost-effective assay for absolute quantification of total plasmatic bevacizumab by LC–MS/MS in human plasma comparing two internal standard calibration approaches. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1070, 43-53.	2.3	19
41	Influence of 8-(N,N-Diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) on cell cycle progression and proliferation of cultured arterial smooth muscle cells. Biochemical Pharmacology, 1991, 41, 1045-1054.	4.4	18
42	Effects of angiotensins on cellular hypertrophy and c-fos expression in cultured arterial smooth muscle cells. FEBS Journal, 1992, 206, 367-372.	0.2	18
43	Tamoxifen Accelerates Endothelial Healing by Targeting ERÎ \pm in Smooth Muscle Cells. Circulation Research, 2020, 127, 1473-1487.	4.5	16
44	Testosterone Prevents Cutaneous Ischemia and Necrosis in Males Through Complementary Estrogenic and Androgenic Actions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 909-919.	2.4	14
45	Observations on the perfusion recovery of regenerative angiogenesis in an ischemic limb model under hyperoxia. Physiological Reports, 2018, 6, e13736.	1.7	13
46	Desert Hedgehog-Driven Endothelium Integrity Is Enhanced by Gas1 (Growth Arrest-Specific 1) but Negatively Regulated by Cdon (Cell Adhesion Molecule-Related/Downregulated by Oncogenes). Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e336-e349.	2.4	13
47	Mast Cells Are the Trigger of Small Vessel Disease and Diastolic Dysfunction in Diabetic Obese Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e193-e207.	2.4	11
48	Na+/H+ Exchanger Isoform 1-Induced Osteopontin Expression Facilitates Cardiomyocyte Hypertrophy. PLoS ONE, 2015, 10, e0123318.	2.5	10
49	Na ⁺ /H ⁺ exchanger isoform 1-induced osteopontin expression facilitates cardiac hypertrophy through p90 ribosomal S6 kinase. Physiological Genomics, 2018, 50, 332-342.	2.3	9
50	Na+/H+ exchanger isoform 1 induced osteopontin expression in cardiomyocytes involves NFAT3/Gata4. Molecular and Cellular Biochemistry, 2015, 404, 211-220.	3.1	7
51	Crosstalk between Sodium–Glucose Cotransporter Inhibitors and Sodium–Hydrogen Exchanger 1 and 3 in Cardiometabolic Diseases. International Journal of Molecular Sciences, 2021, 22, 12677.	4.1	6
52	Full-length Dhh and N-terminal Shh act as competitive antagonists to regulate angiogenesis and vascular permeability. Cardiovascular Research, 2021, 117, 2489-2501.	3.8	5
53	Evaluating the effects of sodium glucose co-transporter -2 inhibitors from a renin–angiotensin–aldosterone system perspective in patients infected with COVID-19: contextualizing findings from the dapagliflozin in respiratory failure in patients with COVID-19 study. Molecular Biology Reports, 2022 1.	2.3	3
54	Characterizing Vascular Dysfunction in Genetically Modified Mice through the Hyperoxia Model. International Journal of Molecular Sciences, 2019, 20, 2178.	4.1	2

#	Article	IF	CITATIONS
55	Estrogen-Related Receptor-Î ³ . Circulation Research, 2012, 110, 1042-1044.	4.5	1
56	Wavelet Analysis of Microcirculatory Flowmotion Reveals Cardiovascular Regulatory Mechanisms–Data from a Beta-Blocker. Applied Sciences (Switzerland), 2020, 10, 4000.	2.5	0
57	Bloodâ \in "brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		O
58	Bloodâ \in "brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		0
59	Blood–brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		O
60	Blood–brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		0
61	Bloodâ \in brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		0
62	Blood–brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		0