List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7809095/publications.pdf Version: 2024-02-01

SEA C MIN

#	Article	IF	CITATIONS
1	Plasma-activated water effectively decontaminates steamed rice cake. LWT - Food Science and Technology, 2022, 157, 112838.	2.5	8
2	Inactivation of Salmonella in steamed fish cake using an in-package combined treatment of cold plasma and ultraviolet-activated zinc oxide. Food Control, 2022, 135, 108772.	2.8	12
3	Consecutive treatments of cold plasma and intense pulsed light for microbial decontamination of fresh cabbage slices in plastic containers. International Journal of Food Microbiology, 2022, 369, 109626.	2.1	8
4	Material requirements for printing cookie dough using a fused deposition modeling 3D printer. Food Science and Biotechnology, 2022, 31, 807-817.	1.2	4
5	In-package cold plasma treatment enhances the antimicrobial efficacy of malic acid-incorporated whey protein edible coating against Salmonella and Listeria monocytogenes in steamed fish paste. Food Packaging and Shelf Life, 2022, 33, 100905.	3.3	3
6	Inactivation of Salmonella on black peppercorns using an integrated ultraviolet-C and cold plasma intervention. Food Control, 2021, 119, 107498.	2.8	8
7	Microbial decontamination of particulate food using a pilot-scale atmospheric plasma jet treatment system. Journal of Food Engineering, 2021, 294, 110436.	2.7	13
8	Microbial Decontamination of Rice Germ Using a Large-Scale Plasma Jet-Pulsed Light-Ultraviolet-C Integrated Treatment System. Food and Bioprocess Technology, 2021, 14, 542-553.	2.6	10
9	Inactivation of Indigenous Microorganisms and Salmonella in Korean Rice Cakes by In-Package Cold Plasma Treatment. International Journal of Environmental Research and Public Health, 2021, 18, 3360.	1.2	16
10	Microbial Inactivation and Quality Preservation of Chicken Breast Salad Using Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment. Foods, 2021, 10, 1214.	1.9	5
11	Preservation of mandarins using a microbial decontamination system integrating calcium oxide solution washing, modified atmosphere packaging, and dielectric barrier discharge cold plasma treatment. Food Packaging and Shelf Life, 2021, 29, 100682.	3.3	12
12	Effects of packaging parameters on the microbial decontamination of Korean steamed rice cakes using in-package atmospheric cold plasma treatment. Food Science and Biotechnology, 2021, 30, 1535-1542.	1.2	8
13	Determination of Material Requirements for 3D Gel Food Printing Using a Fused Deposition Modeling 3D Printer. Foods, 2021, 10, 2272.	1.9	13
14	Inactivation of Salmonella in ready-to-eat cabbage slices packaged in a plastic container using an integrated in-package treatment of hydrogen peroxide and cold plasma. Food Control, 2021, 130, 108392.	2.8	14
15	Effects of washing and packaging combined treatments on the quality of satsuma mandarins during storage. LWT - Food Science and Technology, 2020, 121, 108982.	2.5	2
16	Microbial decontamination system combining antimicrobial solution washing and atmospheric dielectric barrier discharge cold plasma treatment for preservation of mandarins. Postharvest Biology and Technology, 2020, 162, 111102.	2.9	18
17	Effect of cold atmospheric pressure plasma-activated water on the microbial safety of Korean rice cake. LWT - Food Science and Technology, 2020, 120, 108918.	2.5	35
18	Evaluation of In-Package Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment as an Intervention Technology for Decontaminating Bulk Ready-To-Eat Chicken Breast Cubes in Plastic Containers. Applied Sciences (Switzerland), 2020, 10, 6301.	1.3	25

SEA C MIN

#	Article	IF	CITATIONS
19	Pulsed light plasma treatment for the inactivation of Aspergillus flavus spores, Bacillus pumilus spores, and Escherichia coli O157:H7 in red pepper flakes. Food Control, 2020, 118, 107401.	2.8	19
20	Microbial decontamination of red pepper powder using pulsed light plasma. Journal of Food Engineering, 2020, 284, 110075.	2.7	28
21	Inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. LWT - Food Science and Technology, 2020, 127, 109429.	2.5	39
22	Microbial decontamination of black peppercorns by simultaneous treatment with cold plasma and ultraviolet C. Innovative Food Science and Emerging Technologies, 2020, 63, 102392.	2.7	22
23	Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment. Journal of Food Engineering, 2019, 242, 55-67.	2.7	32
24	Preservation of red pepper flakes using microwave ombined cold plasma treatment. Journal of the Science of Food and Agriculture, 2019, 99, 1577-1585.	1.7	22
25	Development of a Microbial Decontamination System Combining Washing with Highly Activated Calcium Oxide Solution and Antimicrobial Coating for Improvement of Mandarin Storability. Journal of Food Science, 2019, 84, 2190-2198.	1.5	7
26	Improvement of the Antioxidant Activity, Water Solubility, and Dispersion Stability of Prickly Pear Cactus Fruit Extracts Using Argon Cold Plasma Treatment. Journal of Food Science, 2019, 84, 2876-2882.	1.5	16
27	Inactivation of Potato Polyphenol Oxidase Using Microwave Cold Plasma Treatment. Journal of Food Science, 2019, 84, 1122-1128.	1.5	22
28	Effects of the treatment parameters on the efficacy of the inactivation of Salmonella contaminating boiled chicken breast by in-package atmospheric cold plasma treatment. International Journal of Food Microbiology, 2019, 293, 24-33.	2.1	41
29	Development of Antiâ€Insect Microencapsulated Polypropylene Films Using a Large Scale Film Coating System. Journal of Food Science, 2018, 83, 1011-1016.	1.5	7
30	In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Research International, 2018, 108, 378-386.	2.9	70
31	Coating Satsuma mandarin using grapefruit seed extract–incorporated carnauba wax for its preservation. Food Science and Biotechnology, 2018, 27, 1649-1658.	1.2	24
32	Moisture vaporization-combined helium dielectric barrier discharge-cold plasma treatment for microbial decontamination of onion flakes. Food Control, 2018, 84, 321-329.	2.8	42
33	Edible Coating Using a Chitosanâ€Based Colloid Incorporating Grapefruit Seed Extract for Cherry Tomato Safety and Preservation. Journal of Food Science, 2018, 83, 138-146.	1.5	51
34	Development of a Gulfweedâ€Based Edible Coating Using Highâ€Pressure Homogenization and Its Application to Smoked Salmon. Journal of Food Science, 2018, 83, 3027-3034.	1.5	6
35	Pasteurization of mixed mandarin and Hallabong tangor juice using pulsed electric field processing combined with heat. Food Science and Biotechnology, 2018, 27, 669-675.	1.2	19
36	Microbial Decontamination of Black Pepper Powder Using a Commercial-scale Intervention System Combining Ultraviolet-C and Plasma Treatments. Food Engineering Progress, 2018, 22, 386-391.	0.0	2

#	Article	IF	CITATIONS
37	Microwave-powered cold plasma treatment for improving microbiological safety of cherry tomato against Salmonella. Postharvest Biology and Technology, 2017, 127, 21-26.	2.9	39
38	In-package inhibition of E.Âcoli O157:H7 on bulk Romaine lettuce using cold plasma. Food Microbiology, 2017, 65, 1-6.	2.1	81
39	Effects of microwave-discharged cold plasma on synthesis and characteristics of citrate derivatives of corn starch granules. Food Science and Biotechnology, 2017, 26, 697-706.	1.2	14
40	Inhibition of Salmonella typhimurium on radish sprouts using nitrogen-cold plasma. International Journal of Food Microbiology, 2017, 249, 66-71.	2.1	62
41	Effects of processing parameters on the inactivation of Bacillus cereus spores on red pepper () Tj ETQq1 1 0.784 Food Microbiology, 2017, 263, 61-66.	4314 rgBT 2.1	/Overlock 10 37
42	Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT - Food Science and Technology, 2017, 75, 742-750.	2.5	84
43	Mandarin preservation by microwave-powered cold plasma treatment. Innovative Food Science and Emerging Technologies, 2017, 39, 25-32.	2.7	133
44	Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiology, 2017, 62, 112-123.	2.1	102
45	Inactivation of Escherichia coli O157:H7 and Aerobic Microorganisms in Romaine Lettuce Packaged in a Commercial Polyethylene Terephthalate Container Using Atmospheric Cold Plasma. Journal of Food Protection, 2017, 80, 35-43.	0.8	35
46	Development and shelf-life determination of senior-friendly strawberry jelly. Korean Journal of Food Science and Technology, 2017, 49, 181-185.	0.0	4
47	Combined treatments of chestnut shell extract, fumaric acid, and mild heat to inactivate foodborne pathogens inoculated on beetroot (Beta vulgaris L.) leaves. Food Science and Biotechnology, 2016, 25, 1217-1220.	1.2	7
48	Cold Oxygen Plasma Treatments for the Improvement of the Physicochemical and Biodegradable Properties of Polylactic Acid Films for Food Packaging. Journal of Food Science, 2016, 81, E86-96.	1.5	71
49	Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. International Journal of Food Microbiology, 2016, 237, 114-120.	2.1	121
50	Oral Toxicity of Cold Plasmaâ€Treated Edible Films for Food Coating. Journal of Food Science, 2016, 81, T3052-T3057.	1.5	39
51	Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocolloids, 2016, 58, 150-159.	5.6	97
52	Helium dielectric barrier discharge-cold plasma treatment for microbiological safety and preservation of onion powder. Korean Journal of Food Science and Technology, 2016, 48, 486-491.	0.0	7
53	Accelerated Drying and Improved Color Properties of Red Pepper by Pretreatment of Pulsed Electric Fields. Drying Technology, 2015, 33, 926-932.	1.7	78
54	Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiology, 2015, 51, 74-80.	2.1	122

#	Article	IF	CITATIONS
55	Microbial inhibition in mozzarella cheese using rosemary and thyme oils in combination with sodium diacetate. Food Science and Biotechnology, 2015, 24, 75-84.	1.2	10
56	Development of anti-insect food packaging film containing a polyvinyl alcohol and cinnamon oil emulsion at a pilot plant scale. Journal of Stored Products Research, 2015, 61, 114-118.	1.2	43
57	Plasticization and moisture sensitivity of potato peel-based biopolymer films. Food Science and Biotechnology, 2015, 24, 1703-1710.	1.2	11
58	Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Science and Biotechnology, 2015, 24, 1717-1724.	1.2	55
59	Prediction of the coating requirements for smoked salmon protection against Listeria monocytogenes using a defatted mustard meal-based antimicrobial edible film containing thiocyanates. LWT - Food Science and Technology, 2015, 61, 231-237.	2.5	4
60	Effects of Edible Coating on the Quality Change in â€~Hongro' Apples during Storage. Journal of Applied Biological Chemistry, 2015, 58, 61-64.	0.2	5
61	Cold Plasma Treatment Application to Improve Microbiological Safety of Infant Milk Powder and Onion Powder. Korean Journal of Food Science and Technology, 2015, 47, 486-491.	0.0	15
62	Indian Meal Moth (<i>Plodia Interpunctella</i>)–Resistant Food Packaging Film Development Using Microencapsulated Cinnamon Oil. Journal of Food Science, 2014, 79, E2023-30.	1.5	11
63	Microbial decontamination of red pepper powder by cold plasma. Food Microbiology, 2014, 38, 128-136.	2.1	171
64	Grape berry coatings of lemongrass oil-incorporating nanoemulsion. LWT - Food Science and Technology, 2014, 58, 1-10.	2.5	86
65	Quality and microbial safety of â€~Fuji' apples coated with carnauba-shellac wax containing lemongrass oil. LWT - Food Science and Technology, 2014, 55, 490-497.	2.5	106
66	Retardation of <i>Listeria Monocytogenes</i> Growth in Mozzarella Cheese Using Antimicrobial Sachets Containing Rosemary Oil and Thyme Oil. Journal of Food Science, 2014, 79, E2272-8.	1.5	38
67	Development of antimicrobial defatted soybean meal-based edible films incorporating the lactoperoxidase system by heat pressing. Journal of Food Engineering, 2014, 120, 183-190.	2.7	19
68	Development of an Antiâ€Insect Sachet Using a Polyvinyl Alcoholâ^'Cinnamon Oil Polymer Strip Against <i>Plodia interpunctella</i> . Journal of Food Science, 2013, 78, E1713-20.	1.5	30
69	Insectâ€Resistant Food Packaging Film Development Using Cinnamon Oil and Microencapsulation Technologies. Journal of Food Science, 2013, 78, E229-37.	1.5	46
70	Antimicrobial edible defatted soybean meal-based films incorporating the lactoperoxidase system. LWT - Food Science and Technology, 2013, 54, 42-50.	2.5	24
71	Development of antimicrobial potato peel wasteâ€based edible films with oregano essential oil to inhibit <i><scp>L</scp>isteria monocytogenes</i> on coldâ€smoked salmon. International Journal of Food Science and Technology, 2013, 48, 211-214.	1.3	28
72	Plum Coatings of Lemongrass Oilâ€incorporating Carnauba Waxâ€based Nanoemulsion. Journal of Food Science, 2013, 78, E1551-E1559.	1.5	99

#	Article	IF	CITATIONS
73	Microbial Decontamination of Vegetables and Spices Using Cold Plasma Treatments. Korean Journal of Food Science and Technology, 2013, 45, 735-741.	0.0	16
74	Listeria monocytogenes inhibition by defatted mustard meal-based edible films. International Journal of Food Microbiology, 2012, 153, 99-105.	2.1	23
75	Trout Skin Gelatinâ€Based Edible Film Development. Journal of Food Science, 2012, 77, E240-6.	1.5	28
76	Development of a defatted mustard meal-based composite film and its application to smoked salmon to retard lipid oxidation. Food Chemistry, 2012, 133, 1501-1509.	4.2	32
77	Defatted mustard seed meal-based biopolymer film development. Food Hydrocolloids, 2012, 26, 118-125.	5.6	41
78	THERMOFORMED CONTAINER WALL THICKNESS EFFECTS ON ORANGE JUICE QUALITY. Journal of Food Processing and Preservation, 2011, 35, 758-766.	0.9	3
79	Study of α-, γ-, and Î-tocopherols in the oxidative stability of lard. Food Science and Biotechnology, 2011, 20, 817-822.	1.2	5
80	Potato peel-based biopolymer film development using high-pressure homogenization, irradiation, and ultrasound. LWT - Food Science and Technology, 2010, 43, 903-909.	2.5	75
81	Apple Peelâ€Based Edible Film Development Using a Highâ€Pressure Homogenization. Journal of Food Science, 2009, 74, E372-81.	1.5	48