Stephanie Heux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7809062/publications.pdf Version: 2024-02-01

STEDHANIE HEILY

#	Article	IF	CITATIONS
1	Engineering Escherichia coli for methanol conversion. Metabolic Engineering, 2015, 28, 190-201.	3.6	166
2	Cofactor engineering in Saccharomyces cerevisiae: Expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metabolic Engineering, 2006, 8, 303-314.	3.6	143
3	MetExplore: collaborative edition and exploration of metabolic networks. Nucleic Acids Research, 2018, 46, W495-W502.	6.5	101
4	Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Applied Microbiology and Biotechnology, 2015, 99, 10163-10176.	1.7	96
5	High-Throughput Quantitative Metabolomics: Workflow for Cultivation, Quenching, and Analysis of Yeast in a Multiwell Format. Analytical Chemistry, 2009, 81, 3623-3629.	3.2	86
6	Recent advances in high-throughput 13C-fluxomics. Current Opinion in Biotechnology, 2017, 43, 104-109.	3.3	59
7	The Methylentetrahydrofolate Reductase Gene Variant (C677T) as a Risk Factor for Essential Hypertension in Caucasians. Hypertension Research, 2004, 27, 663-667.	1.5	57
8	Engineering a Saccharomyces cerevisiae Wine Yeast That Exhibits Reduced Ethanol Production during Fermentation under Controlled Microoxygenation Conditions. Applied and Environmental Microbiology, 2006, 72, 5822-5828.	1.4	56
9	Methanol-Essential Growth of Corynebacterium glutamicum: Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway. International Journal of Molecular Sciences, 2020, 21, 3617.	1.8	38
10	A novel platform for automated high-throughput fluxome profiling of metabolic variants. Metabolic Engineering, 2014, 25, 8-19.	3.6	33
11	Glucose utilization of strains lacking <i>PGI1</i> and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among <i>Saccharomyces cerevisiae</i> strains. FEMS Yeast Research, 2008, 8, 217-224.	1.1	26
12	Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus. Microbial Cell Factories, 2016, 15, 92.	1.9	22
13	Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xyloâ€oligosaccharides utilization to Escherichia coli. Molecular Microbiology, 2016, 102, 579-592.	1.2	20
14	Chemical and Metabolic Controls on Dihydroxyacetone Metabolism Lead to Suboptimal Growth of Escherichia coli. Applied and Environmental Microbiology, 2019, 85, .	1.4	19
15	Flux Enforcement for Fermentative Production of 5-Aminovalerate and Glutarate by Corynebacterium glutamicum. Catalysts, 2020, 10, 1065.	1.6	18
16	Charting the Metabolic Landscape of the Facultative Methylotroph Bacillus methanolicus. MSystems, 2020, 5, .	1.7	13
17	ScalaFlux: AÂscalable approach to quantify fluxes in metabolic subnetworks. PLoS Computational Biology, 2020, 16, e1007799.	1.5	12
18	High-Throughput Workflow for Monitoring and Mining Bioprocess Data and Its Application to Inferring the Physiological Response of Escherichia coli to Perturbations. Applied and Environmental Microbiology, 2011, 77, 7040-7049.	1.4	10

STEPHANIE HEUX

#	Article	IF	CITATIONS
19	A high-throughput metabolomics method to predict high concentration cytotoxicity of drugs from low concentration profiles. Metabolomics, 2012, 8, 433-443.	1.4	10
20	Synthetic Methylotrophy: Past, Present, and Future. , 2018, , 133-151.		10
21	Evaluation of Heterologous Biosynthetic Pathways for Methanol-Based 5-Aminovalerate Production by Thermophilic Bacillus methanolicus. Frontiers in Bioengineering and Biotechnology, 2021, 9, 686319.	2.0	10
22	Functional analysis of isoprenoid precursors biosynthesis by quantitative metabolomics and isotopologue profiling. Metabolomics, 2019, 15, 115.	1.4	8
23	Exploring the Glucose Fluxotype of the E. coli y-ome Using High-Resolution Fluxomics. Metabolites, 2021, 11, 271.	1.3	5
24	From a Hetero- to a Methylotrophic Lifestyle: Flash Back on the Engineering Strategies to Create Synthetic Methanol-User Strains. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
25	Aerobic Utilization of Methanol for Microbial Growth and Production. Advances in Biochemical Engineering/Biotechnology, 2021, , .	0.6	3
26	A tripartite carbohydrate-binding module to functionalize cellulose nanocrystal. Biomaterials Science, 2021, 9, 7444-7455.	2.6	1
27	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks. , 2020, 16, e1007799.		Ο
28	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks. , 2020, 16, e1007799.		0
29	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks. , 2020, 16, e1007799.		0
30	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks. , 2020, 16, e1007799.		0
31	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks. , 2020, 16, e1007799.		0
32	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks. , 2020, 16, e1007799.		0