Xiaohong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7808935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Advances, 2012, 2, 10125.	1.7	778
2	Electrospun Fibrous Mats with High Porosity as Potential Scaffolds for Skin Tissue Engineering. Biomacromolecules, 2008, 9, 1795-1801.	2.6	343
3	Investigation of Drug Release and Matrix Degradation of Electrospun Poly(dl-lactide) Fibers with Paracetanol Inoculation. Biomacromolecules, 2006, 7, 1623-1629.	2.6	318
4	Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials, 2011, 32, 4243-4254.	5.7	311
5	Electrodeposited lead dioxide coatings. Chemical Society Reviews, 2011, 40, 3879.	18.7	310
6	Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials, 2011, 32, 2821-2833.	5.7	287
7	Investigation on process parameters of electrospinning system through orthogonal experimental design. Journal of Applied Polymer Science, 2007, 103, 3105-3112.	1.3	282
8	Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Physical Chemistry Chemical Physics, 2011, 13, 1162-1167.	1.3	282
9	Prospects for alkaline zero gap water electrolysers for hydrogen production. International Journal of Hydrogen Energy, 2011, 36, 15089-15104.	3.8	274
10	Hydrogen Bonding Interaction of Poly(d,l-Lactide)/hydroxyapatite Nanocomposites. Chemistry of Materials, 2007, 19, 247-253.	3.2	237
11	Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 14445-14457.	5.2	212
12	Release pattern and structural integrity of lysozyme encapsulated in core–sheath structured poly(dl·lactide) ultrafine fibers prepared by emulsion electrospinning. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 106-116.	2.0	179
13	Degradation patterns and surface wettability of electrospun fibrous mats. Polymer Degradation and Stability, 2008, 93, 731-738.	2.7	163
14	Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials. Journal of Materials Chemistry A, 2014, 2, 4919.	5.2	161
15	Labeling the Defects of Single-Walled Carbon Nanotubes Using Titanium Dioxide Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 2453-2458.	1.2	160
16	Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials, 2010, 31, 4620-4629.	5.7	155
17	Electrospun Fibers with Plasmid bFGF Polyplex Loadings Promote Skin Wound Healing in Diabetic Rats. Molecular Pharmaceutics, 2012, 9, 48-58.	2.3	133
18	Controlled synthesis of CdS nanorods and hexagonal nanocrystals. Journal of Materials Chemistry, 2003, 13, 2641.	6.7	131

#	Article	IF	CITATIONS
19	The specific capacitance of sol–gel synthesised spinel MnCo2O4 in an alkaline electrolyte. Electrochimica Acta, 2014, 115, 22-27.	2.6	128
20	Investigation on a novel core-coated microspheres protein delivery system. Journal of Controlled Release, 2001, 75, 27-36.	4.8	123
21	Evaluation of electrospun fibrous scaffolds of poly(dl-lactide) and poly(ethylene glycol) for skin tissue engineering. Materials Science and Engineering C, 2009, 29, 1869-1876.	3.8	122
22	A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Electrochimica Acta, 2009, 54, 4688-4695.	2.6	118
23	Influence of process parameters on the protein stability encapsulated in poly-dl-lactide–poly(ethylene) Tj ETQq]	1 0.7843 4.8	14 rgBT /0
24	Structural stability and release profiles of proteins from coreâ€shell poly (<scp>DL</scp> â€lactide) ultrafine fibers prepared by emulsion electrospinning. Journal of Biomedical Materials Research - Part A, 2008, 86A, 374-385.	2.1	111
25	Antibacterial Micelles with Vancomycin-Mediated Targeting and pH/Lipase-Triggered Release of Antibiotics. ACS Applied Materials & amp; Interfaces, 2018, 10, 36814-36823.	4.0	105
26	Synthesis and characterization of biodegradable low molecular weight aliphatic polyesters and their use in protein-delivery systems. Journal of Applied Polymer Science, 2004, 91, 1848-1856.	1.3	100
27	Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation. International Journal of Pharmaceutics, 2012, 425, 19-28.	2.6	100
28	Shape memory effect of poly(d,l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloids and Surfaces B: Biointerfaces, 2009, 71, 67-72.	2.5	94
29	Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomaterialia, 2012, 8, 2659-2669.	4.1	94
30	Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors. Journal of Power Sources, 2015, 293, 657-674.	4.0	93
31	Preparation and characterization of pyrrole/aniline copolymer nanofibrils using the template-synthesis method. Journal of Applied Polymer Science, 2001, 81, 3002-3007.	1.3	92
32	Preparation and Characterization of a Novel Electrospun Spider Silk Fibroin/Poly(<scp>d</scp> , <scp>l</scp> -lactide) Composite Fiber. Journal of Physical Chemistry B, 2008, 112, 11209-11216.	1.2	91
33	In vitro degradation and release profiles for electrospun polymeric fibers containing paracetanol. Colloids and Surfaces B: Biointerfaces, 2008, 66, 206-212.	2.5	88
34	Polymerization of Lactides and Lactones. 10. Synthesis, Characterization, and Application of Amino-Terminated Poly(ethylene glycol)-co-poly(Îμ-caprolactone) Block Copolymer. Macromolecules, 2000, 33, 1613-1617.	2.2	86
35	Poly-d,l-lactide–co-poly(ethylene glycol) microspheres as potential vaccine delivery systems. Journal of Controlled Release, 2003, 86, 195-205.	4.8	86
36	Electrospun Composite Mats of Poly[(<scp>D,L</scp> â€lactide) <i>â€coâ€</i> glycolide] and Collagen with High Porosity as Potential Scaffolds for Skin Tissue Engineering. Macromolecular Materials and Engineering, 2009, 294, 611-619.	1.7	86

#	Article	IF	CITATIONS
37	Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. Journal of Controlled Release, 2017, 268, 390-399.	4.8	85
38	Nanocrystalline Cellulose-Assisted Generation of Silver Nanoparticles for Nonenzymatic Glucose Detection and Antibacterial Agent. Biomacromolecules, 2016, 17, 2472-2478.	2.6	83
39	Core–sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomaterialia, 2011, 7, 2533-2543.	4.1	82
40	Hepatocyte Cocultures with Endothelial Cells and Fibroblasts on Micropatterned Fibrous Mats to Promote Liver-Specific Functions and Capillary Formation Capabilities. Biomacromolecules, 2014, 15, 1044-1054.	2.6	81
41	A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) Part VIII. The cycling of a 10cm×10cm flow cell. Journal of Power Sources, 2010, 195, 1731-1738.	4.0	79
42	The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage. Renewable and Sustainable Energy Reviews, 2018, 90, 992-1016.	8.2	77
43	Electrospun fibrous scaffolds with continuous gradations in mineral contents and biological cues for manipulating cellular behaviors. Acta Biomaterialia, 2012, 8, 1576-1585.	4.1	76
44	Folate-Decorated and Reduction-Sensitive Micelles Assembled from Amphiphilic Polymer–Camptothecin Conjugates for Intracellular Drug Delivery. Molecular Pharmaceutics, 2014, 11, 4258-4269.	2.3	75
45	Electrospun Fibrous Mats with Conjugated Tetraphenylethylene and Mannose for Sensitive Turn-On Fluorescent Sensing of <i>Escherichia coli</i> . ACS Applied Materials & Interfaces, 2015, 7, 5177-5186.	4.0	72
46	3D Hierarchically Structured CoS Nanosheets: Li ⁺ Storage Mechanism and Application of the High-Performance Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 3709-3718.	4.0	72
47	Synthesis of magnetic polymer microspheres and application for immobilization of proteinase of balillus sublitis. Journal of Applied Polymer Science, 1995, 58, 1991-1997.	1.3	71
48	A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX: Electrode and electrolyte conditioning with hydrogen peroxide. Journal of Power Sources, 2010, 195, 2975-2978.	4.0	70
49	Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating. Materials Science and Engineering C, 2016, 69, 865-874.	3.8	70
50	A comparison of cathodes for zero gap alkaline water electrolysers for hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 7429-7435.	3.8	69
51	In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers. Journal of Biomedical Materials Research - Part A, 2007, 82A, 831-841.	2.1	68
52	Bacterial biofilm destruction by size/surface charge-adaptive micelles. Nanoscale, 2019, 11, 1410-1422.	2.8	68
53	Enzyme-powered Janus nanomotors launched from intratumoral depots to address drug delivery barriers. Chemical Engineering Journal, 2019, 375, 122109.	6.6	67
54	Electrospun fibers of acid-labile biodegradable polymers with acetal groups as potential drug carriers. International Journal of Pharmaceutics, 2008, 361, 47-55.	2.6	65

#	Article	IF	CITATIONS
55	Comparison of the Spinels Co 3 O 4 and NiCo 2 O 4 as Bifunctional Oxygen Catalysts in Alkaline Media. Electrochimica Acta, 2016, 188, 286-293.	2.6	65
56	In vitro degradation and release profiles for poly-dl-lactide-poly(ethylene glycol) microspheres containing human serum albumin. Journal of Controlled Release, 2001, 71, 165-173.	4.8	60
57	Electrospun fibers of acid-labile biodegradable polymers containing ortho ester groups for controlled release of paracetamol. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 445-452.	2.0	60
58	Ratiometric fluorescent response of electrospun fibrous strips for real-time sensing of alkaline phosphatase in serum. Biosensors and Bioelectronics, 2017, 91, 217-224.	5.3	60
59	Preparation and characterization of porous biodegradable microspheres used for controlled protein delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 345, 173-181.	2.3	59
60	Release modulation and cytotoxicity of hydroxycamptothecin-loaded electrospun fibers with 2-hydroxypropyl-β-cyclodextrin inoculations. International Journal of Pharmaceutics, 2010, 391, 55-64.	2.6	58
61	In Situ Growth Kinetics of Hydroxyapatite on Electrospun Poly(<scp>dl</scp> -lactide) Fibers with Gelatin Grafted. Crystal Growth and Design, 2008, 8, 4576-4582.	1.4	56
62	Screening of effective electrolyte additives for zinc-based redox flow battery systems. Journal of Power Sources, 2019, 412, 44-54.	4.0	54
63	A Sol-Gel Process for the Synthesis of NiCo2O4Having Improved Specific Capacitance and Cycle Stability for Electrochemical Capacitors. Journal of the Electrochemical Society, 2012, 159, A1262-A1266.	1.3	53
64	In vitro degradation and release profiles of poly-DL-lactide-poly(ethylene glycol) microspheres with entrapped proteins. Journal of Applied Polymer Science, 2000, 78, 140-148.	1.3	52
65	Fluorescent Strips of Electrospun Fibers for Ratiometric Sensing of Serum Heparin and Urine Trypsin. ACS Applied Materials & Interfaces, 2017, 9, 3400-3410.	4.0	52
66	Effect of dissolved CO2 on the conductivity of the ionic liquid [bmim][PF6]. New Journal of Chemistry, 2003, 27, 333-336.	1.4	49
67	Controllable growth of hydroxyapatite on electrospun poly(dl-lactide) fibers grafted with chitosan as potential tissue engineering scaffolds. Polymer, 2010, 51, 2320-2328.	1.8	49
68	Engineering blood vessels through micropatterned co-culture of vascular endothelial and smooth muscle cells on bilayered electrospun fibrous mats with pDNA inoculation. Acta Biomaterialia, 2015, 11, 114-125.	4.1	48
69	Electrospun Fibrous Mats on Lithographically Micropatterned Collectors to Control Cellular Behaviors. Langmuir, 2012, 28, 17134-17142.	1.6	46
70	Tunable conjugation densities of camptothecin on hyaluronic acid for tumor targeting and reduction-triggered release. Acta Biomaterialia, 2016, 43, 195-207.	4.1	46
71	In vitro protein release and degradation of poly-dl-lactide-poly(ethylene glycol) microspheres with entrapped human serum albumin: quantitative evaluation of the factors involved in protein release phases. Pharmaceutical Research, 2001, 18, 117-124.	1.7	43
72	Electrochemical preparation of polythiophene in acetonitrile solution with boron fluoride-ethyl ether as the electrolyte. Journal of Applied Polymer Science, 2003, 90, 940-946.	1.3	42

#	Article	IF	CITATIONS
73	Synergistic antitumor efficacy of redox and pH dually responsive micelleplexes for co-delivery of camptothecin and genes. Acta Biomaterialia, 2017, 49, 444-455.	4.1	42
74	Optimization of the Electrodeposition Process of High-Performance Bismuth Antimony Telluride Compounds for Thermoelectric Applications. Langmuir, 2010, 26, 16980-16985.	1.6	41
75	High Volumetric Energy Density Capacitors Based on New Electrode Material Lanthanum Nitride. ACS Energy Letters, 2017, 2, 336-341.	8.8	41
76	Enhancement of Oxygen Transfer by Design Nickel Foam Electrode for Zincâ^'Air Battery. Journal of the Electrochemical Society, 2018, 165, A809-A818.	1.3	41
77	Janus micromotors for motion-capture-ratiometric fluorescence detection of circulating tumor cells. Chemical Engineering Journal, 2020, 382, 123041.	6.6	40
78	Polymerization of lactides and lactones. IV. Ring-opening polymerization of ?-caprolactone by rare earth phenyl compounds. Journal of Applied Polymer Science, 1999, 73, 1401-1408.	1.3	39
79	Fibrous strips decorated with cleavable aggregation-induced emission probes for visual detection of Hg2+. Journal of Hazardous Materials, 2020, 385, 121556.	6.5	39
80	Shape effects of electrospun fiber rods on the tissue distribution and antitumor efficacy. Journal of Controlled Release, 2016, 244, 52-62.	4.8	38
81	Preparation and characterization of interferonâ€loaded magnetic biodegradable microspheres. Journal of Biomadical Materials Research - Part B Applied Biomaterials, 2008, 87B, 189-196.	1.6	37
82	Electrospun Gelatin Fibers with a Multiple Release of Antibiotics Accelerate Dermal Regeneration in Infected Deep Burns. Macromolecular Bioscience, 2016, 16, 1368-1380.	2.1	37
83	A novel bifunctional oxygen GDE for alkaline secondary batteries. Electrochemistry Communications, 2013, 34, 228-230.	2.3	35
84	The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries. Journal of Power Sources, 2014, 259, 43-49.	4.0	35
85	Bacterial microbots for acid-labile release of hybrid micelles to promote the synergistic antitumor efficacy. Acta Biomaterialia, 2018, 78, 198-210.	4.1	35
86	Janus micromotors for motion-capture-lighting of bacteria. Nanoscale, 2019, 11, 17831-17840.	2.8	34
87	Study on biodegradable microspheres containing recombinant interferon-α-2a. Journal of Pharmacy and Pharmacology, 2010, 54, 1287-1292.	1.2	33
88	Spatial distribution and antitumor activities after intratumoral injection of fragmented fibers with loaded hydroxycamptothecin. Acta Biomaterialia, 2015, 23, 189-200.	4.1	33
89	High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithography. Physical Chemistry Chemical Physics, 2009, 11, 3584.	1.3	32
90	Polymerization of lactides and lactones, 12. Synthesis of poly[(glycolic acid)-alt-(L-glutamic acid)] and poly{(lactic acid)-co-[(glycolic acid)-alt-(L-glutamic acid)]}. Macromolecular Chemistry and Physics, 2000, 201, 2371-2376.	1.1	31

24

#	Article	IF	CITATIONS
91	Promoted regeneration of mature blood vessels by electrospun fibers with loaded multiple pDNA-calcium phosphate nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 699-710.	2.0	31
92	Hepatocyte spheroid culture on fibrous scaffolds with grafted functional ligands as an in vitro model for predicting drug metabolism and hepatotoxicity. Acta Biomaterialia, 2015, 28, 138-148.	4.1	31
93	Nanocrystalline Cellulose Improves the Biocompatibility and Reduces the Wear Debris of Ultrahigh Molecular Weight Polyethylene <i>via</i> Weak Binding. ACS Nano, 2016, 10, 298-306.	7.3	30
94	Cell Adhesion-Mediated Piezoelectric Self-Stimulation on Polydopamine-Modified Poly(vinylidene) Tj ETQq0 0 0 rg	BT /Overlc 4.0	ock 10 Tf 50
95	Liposome Induced Self-Assembly of Gold Nanoparticles into Hollow Spheres. Langmuir, 2004, 20, 3734-3739.	1.6	29
96	Bacterial navigation for tumor targeting and photothermally-triggered bacterial ghost transformation for spatiotemporal drug release. Acta Biomaterialia, 2021, 131, 172-184.	4.1	29

97	Ultrasound-Propelled Janus Rod-Shaped Micromotors for Site-Specific Sonodynamic Thrombolysis. ACS Applied Materials & Interfaces, 2021, 13, 58411-58421.	4.0	29
98	Synthesis and Properties of Novel Thermoresponsive Polyesters with Oligo(ethylene glycol) Pendent Chains. Macromolecular Chemistry and Physics, 2011, 212, 2626-2632.	1.1	28
99	Promoted antitumor activities of acid-labile electrospun fibers loaded with hydroxycamptothecin via intratumoral implantation. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 545-553.	2.0	27
100	Tumor pH-Responsive Release of Drug-Conjugated Micelles from Fiber Fragments for Intratumoral Chemotherapy. ACS Applied Materials & amp; Interfaces, 2017, 9, 32534-32544.	4.0	27
101	Cardiomyocyte coculture on layered fibrous scaffolds assembled from micropatterned electrospun mats. Materials Science and Engineering C, 2017, 81, 500-510.	3.8	27
102	Tuning multiple arms for camptothecin and folate conjugations on star-shaped copolymers to enhance glutathione-mediated intracellular drug delivery. Polymer Chemistry, 2015, 6, 2192-2203.	1.9	26
103	In situ grown fibrous composites of poly(dl-lactide) and hydroxyapatite as potential tissue engineering scaffolds. Polymer, 2010, 51, 6268-6277.	1.8	25
104	Antimetastasis and antitumor efficacy promoted by sequential release of vascular disrupting and chemotherapeutic agents from electrospun fibers. International Journal of Pharmaceutics, 2014, 475, 438-449.	2.6	25
105	Bacterial ghosts for targeting delivery and subsequent responsive release of ciprofloxacin to destruct intracellular bacteria. Chemical Engineering Journal, 2020, 399, 125700.	6.6	25
106	Janus rod-like micromotors to promote the tumor accumulation and cell internalization of therapeutic agents. Chemical Engineering Journal, 2021, 404, 127073.	6.6	25
107	Electrodeposition of mesoporous CdTe films with the aid of citric acid from lyotropic liquid crystalline phases. Journal of Materials Chemistry, 2006, 16, 3207.	6.7	24

108Release kinetics and cellular profiles for bFGF-loaded electrospun fibers: Effect of the conjugation
density and molecular weight of heparin. Polymer, 2011, 52, 3357-3367.1.8

#	Article	IF	CITATIONS
109	Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine. Nanoscale, 2015, 7, 13075-13087.	2.8	24
110	Acid-Labile Degradation of Injectable Fiber Fragments to Release Bioreducible Micelles for Targeted Cancer Therapy. Biomacromolecules, 2018, 19, 1100-1110.	2.6	24
111	Bacteria-propelled microrockets to promote the tumor accumulation and intracellular drug uptake. Chemical Engineering Journal, 2020, 392, 123786.	6.6	23
112	Hierarchically structured injectable hydrogels with loaded cell spheroids for cartilage repairing and osteoarthritis treatment. Chemical Engineering Journal, 2022, 430, 132211.	6.6	23
113	Nitric oxide-propelled nanomotors for bacterial biofilm elimination and endotoxin removal to treat infected burn wounds. Journal of Materials Chemistry B, 2022, 10, 4189-4202.	2.9	23
114	Synergistic Promotion of Blood Vessel Regeneration by Astragaloside IV and Ferulic Acid from Electrospun Fibrous Mats. Molecular Pharmaceutics, 2013, 10, 2394-2403.	2.3	22
115	Cenetically engineering of Escherichia coli and immobilization on electrospun fibers for drug delivery purposes. Journal of Materials Chemistry B, 2016, 4, 6820-6829.	2.9	22
116	Intracellular bacteria destruction via traceable enzymes-responsive release and deferoxamine-mediated ingestion of antibiotics. Journal of Controlled Release, 2020, 322, 326-336.	4.8	22
117	Persistent Luminescenceâ€Based Theranostics for Realâ€īme Monitoring and Simultaneously Launching Photodynamic Therapy of Bacterial Infections. Small, 2022, 18, e2200813.	5.2	21
118	Electrochemical copolymerization of pyrrole and thiophene nanofibrils using template-synthesis method. Journal of Applied Polymer Science, 2002, 86, 2403-2407.	1.3	20
119	Polymerization of short single-walled carbon nanotubes into large strands. Carbon, 2003, 41, 598-601.	5.4	20
120	The photoluminescence enhancement of electrospun poly(ethylene oxide) fibers with CdS and polyaniline inoculations. Acta Materialia, 2008, 56, 5775-5782.	3.8	19
121	Degradation behaviors of electrospun fibrous composites of hydroxyapatite and chemically modified poly(dl-lactide). Polymer Degradation and Stability, 2011, 96, 114-122.	2.7	19
122	Promoting hepatocyte spheroid formation and functions by coculture with fibroblasts on micropatterned electrospun fibrous scaffolds. Journal of Materials Chemistry B, 2014, 2, 3029.	2.9	19
123	Synergistic antitumor efficacy of hybrid micelles with mitochondrial targeting and stimuli-responsive drug release behavior. Journal of Materials Chemistry B, 2019, 7, 1415-1426.	2.9	19
124	Direct electrodeposition of PbTe thin films on n-type silicon. Electrochemistry Communications, 2008, 10, 363-366.	2.3	18
125	A study on Pb2+/Pb electrodes for soluble lead redox flow cells prepared with methanesulfonic acid and recycled lead. Journal of Applied Electrochemistry, 2016, 46, 861-868.	1.5	18
126	Nanofibrous Grids Assembled Orthogonally from Direct-Written Piezoelectric Fibers as Self-Powered Tactile Sensors. ACS Applied Materials & amp; Interfaces, 2021, 13, 10623-10631.	4.0	18

#	Article	IF	CITATIONS
127	Selfâ€Propelling Nanomotors Integrated with Biofilm Microenvironmentâ€Activated NO Release to Accelerate Healing of Bacteriaâ€Infected Diabetic Wounds. Advanced Healthcare Materials, 2022, 11, .	3.9	18
128	Preparation and characterization of protein-loaded polyanhydride microspheres. Journal of Materials Science: Materials in Medicine, 2009, 20, 2035-2042.	1.7	17
129	Galactose Decorated Acid-Labile Nanoparticles Encapsulating Quantum Dots for Enhanced Cellular Uptake and Subcellular Localization. Pharmaceutical Research, 2012, 29, 2167-2179.	1.7	17
130	Multimeric immobilization of alcohol oxidase on electrospun fibers for valid tests of alcoholic saliva. Journal of Biotechnology, 2013, 168, 46-54.	1.9	17
131	Micropatterned coculture of hepatocytes on electrospun fibers as a potential in vitro model for predictive drug metabolism. Materials Science and Engineering C, 2016, 63, 475-484.	3.8	17
132	Spheroid culture of primary hepatocytes with short fibers as a predictable in vitro model for drug screening. Journal of Materials Chemistry B, 2016, 4, 7155-7167.	2.9	17
133	Photoactivated Release of Nitric Oxide and Antimicrobial Peptide Derivatives for Synergistic Therapy of Bacterial Skin Abscesses. Advanced Healthcare Materials, 2022, 11, e2200199.	3.9	17
134	Investigation on preparation and protein release of biodegradable polymer microspheres as drug-delivery system. Journal of Applied Polymer Science, 2002, 84, 778-784.	1.3	16
135	An implantable depot capable of in situ generation of micelles to achieve controlled and targeted tumor chemotherapy. Acta Biomaterialia, 2018, 67, 122-133.	4.1	16
136	Hierarchically targetable fiber rods decorated with dual targeting ligands and detachable zwitterionic coronas. Acta Biomaterialia, 2020, 110, 231-241.	4.1	16
137	Fibrous testing papers for fluorescence trace sensing and photodynamic destruction of antibiotic-resistant bacteria. Journal of Materials Chemistry B, 2020, 8, 2709-2718.	2.9	16
138	Icebreaker-inspired Janus nanomotors to combat barriers in the delivery of chemotherapeutic agents. Nanoscale, 2021, 13, 6545-6557.	2.8	16
139	Shape switching of CaCO3-templated nanorods into stiffness-adjustable nanocapsules to promote efficient drug delivery. Acta Biomaterialia, 2021, 128, 474-485.	4.1	16
140	Surface decoration of black phosphorus nanosheets to generate oxygen and release ¹ O ₂ for photodynamic killing of bacteria. Nanoscale, 2021, 13, 13506-13518.	2.8	16
141	Electrochemical deposition of polypyrrole on patterned self-assembled monolayers. Journal of Electroanalytical Chemistry, 2000, 492, 23-30.	1.9	15
142	Preparation and characterization of poly-DL-lactide-poly(ethylene glycol) microspheres containing ?DNA. Journal of Applied Polymer Science, 2002, 86, 2557-2566.	1.3	15
143	Novel Biodegradable Polymers as Gene Carriers. Macromolecular Bioscience, 2004, 4, 1113-1117.	2.1	15
144	Biodegradable ultrafine fibers with core–sheath structures for protein delivery and its optimization. Polymers for Advanced Technologies, 2011, 22, 1842-1850.	1.6	15

#	Article	IF	CITATIONS
145	Electrosprayed Microparticles with Loaded pDNA-Calcium Phosphate Nanoparticles to Promote the Regeneration of Mature Blood Vessels. Pharmaceutical Research, 2014, 31, 874-886.	1.7	15
146	Micropatterned co-culture of cardiac myocytes on fibrous scaffolds for predictive screening of drug cardiotoxicities. Nanoscale, 2017, 9, 4950-4962.	2.8	15
147	Light-triggerable and pH/lipase-responsive release of antibiotics and β-lactamase inhibitors from host-guest self-assembled micelles to combat biofilms and resistant bacteria. Chemical Engineering Journal, 2021, 424, 130330.	6.6	15
148	Bacteria-propelled microtubular motors for efficient penetration and targeting delivery of thrombolytic agents. Acta Biomaterialia, 2022, 142, 49-59.	4.1	15
149	Pharmacokinetics and antitumor efficacy of micelles assembled from multiarmed amphiphilic copolymers with drug conjugates in comparison with drug-encapsulated micelles. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 9-19.	2.0	14
150	Polymerization of lactides and lactones. III. Ring-opening polymerization ofDL-lactide by the (?3-C3H5)2Sm(?2-Cl)2(?3-Cl)2Mg(tmed)(?2-Cl)Mg(tmed) complex. Journal of Applied Polymer Science, 1999, 73, 2857-2862.	1.3	13
151	Fibrous Composites With Anisotropic Distribution of Mechanical Properties After Layerâ€byâ€Layer Deposition of Aligned Electrospun Fibers. Advanced Engineering Materials, 2010, 12, B529.	1.6	13
152	Promoting Antitumor Activities of Hydroxycamptothecin by Encapsulation into Acid-Labile Nanoparticles Using Electrospraying. Pharmaceutical Research, 2014, 31, 46-59.	1.7	13
153	Mesosilica-coated ultrafine fibers for highly efficient laccase encapsulation. Nanoscale, 2014, 6, 6468.	2.8	13
154	Influence of synthesis parameters on amorphous manganese dioxide catalyst electrocatalytic performance. Electrochimica Acta, 2017, 245, 615-624.	2.6	13
155	Promoted Transfection Efficiency of pDNA Polyplexes-Loaded Biodegradable Microparticles Containing Acid-Labile Segments and Galactose Grafts. Pharmaceutical Research, 2012, 29, 471-482.	1.7	12
156	Promoted healing of femoral defects with <i>in situ</i> grown fibrous composites of hydroxyapatite and poly(<scp>DL</scp> ″actide). Journal of Biomedical Materials Research - Part A, 2012, 100A, 1407-1418.	2.1	11
157	Integrated osteochondral differentiation of mesenchymal stem cells on biomimetic nanofibrous mats with cell adhesion-generated piezopotential gradients. Nanoscale, 2022, 14, 3865-3877.	2.8	11
158	Ultrasound-Activated Persistent Luminescence Imaging and Bacteria-Triggered Drug Release for <i>Helicobacter pylori</i> Infection Theranostics. ACS Applied Materials & Interfaces, 2022, 14, 26418-26430.	4.0	10
159	High-Density Growth of Single-Wall Carbon Nanotubes on Silicon by Fabrication of Nanosized Catalyst Thin Films. Chemistry of Materials, 2002, 14, 4262-4266.	3.2	9
160	Uniform field electrospinning for 3D printing of fibrous configurations as strain sensors. Nanotechnology, 2019, 30, 375301.	1.3	9
161	Preparation and Characterization of Biodegradable Microspheres Containing Hepatitis B Surface Antigen. Macromolecular Bioscience, 2004, 4, 47-52.	2.1	8
162	A novel in situ synthesis of dicalcium phosphate dehydrate nanocrystals in biodegradable polymer matrix. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 430, 341-345.	2.6	8

#	Article	IF	CITATIONS
163	Investigation of endocytosis and cytotoxicity of poly-d, l-lactide-poly(ethylene glycol) micro/nano-particles in osteoblast cells. International Journal of Nanomedicine, 2010, 5, 557.	3.3	8
164	Correlations of <i>in vitro</i> and <i>in vivo</i> degradation tests on electrospun polyâ€ <scp>DL</scp> â€lactideâ€poly(ethylene glycol) fibers. Journal of Applied Polymer Science, 2012, 125, 2207-2215.	1.3	8
165	Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 1949-1960.	2.1	8
166	Fluorescent fibrous mats assembled with self-propagating probes for visual sensing of hydrogen peroxide and choline. Analyst, The, 2019, 144, 5624-5636.	1.7	8
167	Polymerization of Lactides and Lactones, 9. Synthesis and Characterization of Novel Random Copolyesters Containing 5-Phenyl-É>-caprolactone Units. Macromolecular Chemistry and Physics, 2001, 202, 546-552.	1.1	7
168	Polymerization of Lactides and Lactones, 8. Study on the Ring-Opening Polymerization of 3-Phenylcaprolactone and 5-Phenylcaprolactone. Macromolecular Chemistry and Physics, 2001, 202, 2417-2424.	1.1	7
169	High surface area coatings for hydrogen evolution cathodes prepared by magnetron sputtering. International Journal of Hydrogen Energy, 2015, 40, 2452-2459.	3.8	7
170	Preliminary study on the variation of radon-222 inside greenhouse of Shouguang county, China. Journal of Environmental Radioactivity, 2016, 153, 120-125.	0.9	7
171	Clucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 774-788.	1.3	7
172	InÂvitro degradation and release profiles for Poly-dl-lactide film containing paracetamol. Journal of Materials Science: Materials in Medicine, 2007, 18, 1623-1626.	1.7	6
173	Fretting behaviors of hot-pressed electrospun hydroxyapatite/poly(dl-lactide) fibrous composites as potential orthopedic implants. Tribology International, 2012, 53, 124-133.	3.0	6
174	Effect of polypeptide block length on nano-assembly morphology and thermo-sensitivity of methyl poly (ethylene glycol)-poly (L-valine) copolymer aqueous solutions. Journal of Sol-Gel Science and Technology, 2019, 92, 618-627.	1.1	6
175	Synergistic Treatment of Obesity via Locally Promoting Beige Adipogenesis and Antioxidative Defense in Adipose Tissues. ACS Biomaterials Science and Engineering, 2021, 7, 727-738.	2.6	6
176	Poly-DL-lactide-poly(ethylene glycol) microspheres as oral and parenteral delivery systems for hepatitis B surface antigen. Journal of Applied Polymer Science, 2002, 83, 850-856.	1.3	5
177	Nanotemplated lead telluride thin films. Microporous and Mesoporous Materials, 2009, 118, 403-407.	2.2	5
178	Body Distribution of Poly-DL-lactide-poly(ethylene glycol) Microspheres with Entrapped Leptospira interrogans Antigens Following Intravenous and Oral Administration to Guinea-pigs. Journal of Pharmacy and Pharmacology, 2010, 52, 763-770.	1.2	5
179	Sequential Drug Release to Modulate Collagen Synthesis and Promote Micelle Penetration in Tumors. ACS Biomaterials Science and Engineering, 2019, 5, 1343-1353.	2.6	5
180	3D spheroids generated on carbon nanotube-functionalized fibrous scaffolds for drug metabolism and toxicity screening. Biomaterials Science, 2020, 8, 426-437.	2.6	5

#	Article	IF	CITATIONS
181	Engineering <scp>HepG2</scp> spheroids with injectable fiber fragments as predictable models for drug metabolism and tumor infiltration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3331-3344.	1.6	4
182	Macrophage Spheroids with Chronological Phenotype Shifting To Promote Therapeutic Angiogenesis in Critical Limb Ischemia. ACS Applied Bio Materials, 2020, 3, 3707-3717.	2.3	3
183	Tunable release of chemotherapeutic and vascular disrupting agents from injectable fiber fragments potentiates combination chemotherapy. International Journal of Pharmaceutics, 2016, 506, 1-12.	2.6	2
184	Recent research progress of nanocellulose crystal and its composites with polymers. Chinese Science Bulletin, 2013, 58, 2385-2392.	0.4	2
185	Synthesis, spectroscopy and electrochemistry of a new phthalonitrile derivative with substituted PDT-TTF unit. Journal of Porphyrins and Phthalocyanines, 2003, 07, 191-198.	0.4	0