
Sandra Jenatsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7808920/publications.pdf Version: 2024-02-01

SANDRA LENATSCH

#	Article	IF	CITATIONS
1	Determining non-radiative decay rates in TADF compounds using coupled transient and steady state optical data. Journal of Materials Chemistry C, 2022, 10, 4878-4885.	5.5	7
2	Electron Trap Dynamics in Polymer Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	14.9	9
3	Detailed electro-optical modeling of thermally-activated delayed fluorescent OLEDs with different host-guest concentrations. Organic Electronics, 2022, 107, 106553.	2.6	3
4	Scrutinizing thermally stimulated current transients originating from trapped charges in organic semiconductors: A drift-diffusion study. Journal of Applied Physics, 2022, 131, .	2.5	3
5	Pinpointing the origin of the increased driving voltage during prolonged operation in a phosphorescent OLED based on an exciplex host. Organic Electronics, 2022, 108, 106570.	2.6	11
6	Pâ€129: Estimating Nonâ€radiative Decay Rates in TADF Emitters Using Steadyâ€6tate and Transient Optical Data. Digest of Technical Papers SID International Symposium, 2022, 53, 1495-1498.	0.3	0
7	Elucidating Deviating Temperature Behavior of Organic Lightâ€Emitting Diodes and Lightâ€Emitting Electrochemical Cells. Advanced Optical Materials, 2021, 9, 2001405.	7.3	15
8	45.3: Combining steadyâ€state, frequency, and time domain data for a comprehensive analysis of multilayer TADF OLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 299-302.	0.3	0
9	XGBoost Trained on Synthetic Data to Extract Material Parameters of Organic Semiconductors. , 2021, , .		2
10	Sinusoidal small-signal (AC) and steady-state (DC) analysis of large-area solar cells. Solar Energy Advances, 2021, 1, 100003.	3.0	1
11	The Dynamic Emission Zone in Sandwich Polymer Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1906803.	14.9	22
12	43â€4: Combining steadyâ€state, frequency, and time domain data for a comprehensive analysis of multilayer TADF OLEDs. Digest of Technical Papers SID International Symposium, 2020, 51, 634-637.	0.3	0
13	Coupled 3D master equation and 1D driftâ€diffusion approach for advanced OLED modeling. Journal of the Society for Information Display, 2020, 28, 440-449.	2.1	8
14	Combining steady-state with frequency and time domain data to quantitatively analyze charge transport in organic light-emitting diodes. Journal of Applied Physics, 2020, 127, 031102.	2.5	13
15	3.3: Modeling Electrical and Optical Crossâ€₹alk between Adjacent Pixels in Organic Lightâ€Emitting Diode Displays. Digest of Technical Papers SID International Symposium, 2019, 50, 31-34.	0.3	3
16	38.1: Quantitative Analysis of Charge Transport in Singleâ€Carrier Devices and OLEDs Combining DC and AC Data. Digest of Technical Papers SID International Symposium, 2019, 50, 414-417.	0.3	0
17	Pâ€176: Quantitative Analysis of Charge Transport in Single arrier Devices and OLEDs Combining DC and AC Data. Digest of Technical Papers SID International Symposium, 2019, 50, 1895-1898.	0.3	3
18	Optimized Electrolyte Loading and Active Film Thickness for Sandwich Polymer Lightâ€Emitting Electrochemical Cells. Advanced Optical Materials, 2019, 7, 1801278.	7.3	32

SANDRA JENATSCH

#	Article	IF	CITATIONS
19	Opto-electronic characterization of third-generation solar cells. Science and Technology of Advanced Materials, 2018, 19, 291-316.	6.1	91
20	Organic Salt Semiconductor with High Photoconductivity and Long Carrier Lifetime. Advanced Functional Materials, 2018, 28, 1705724.	14.9	17
21	Time-Dependent p–i–n Structure and Emission Zone in Sandwich-Type Light-Emitting Electrochemical Cells. ACS Photonics, 2018, 5, 1591-1598.	6.6	23
22	Direct Measurement of Ion Redistribution and Resulting Modification of Chemical Equilibria in Polymer Thin Film Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2018, 10, 39100-39106.	8.0	10
23	Quantitative analysis of charge transport in intrinsic and doped organic semiconductors combining steady-state and frequency-domain data. Journal of Applied Physics, 2018, 124, .	2.5	9
24	Ternary semitransparent organic solar cells with a laminated top electrode. Science and Technology of Advanced Materials, 2017, 18, 68-75.	6.1	19
25	Hydrogen reduction of molybdenum oxide at room temperature. Scientific Reports, 2017, 7, 40761.	3.3	147
26	Strongly Red-Shifted Photoluminescence Band Induced by Molecular Twisting in Cyanine (Cy3) Dye Films. Journal of Physical Chemistry C, 2017, 121, 9587-9593.	3.1	19
27	Visible light-emitting host-guest electrochemical cells using cyanine dyes. Organic Electronics, 2017, 48, 77-84.	2.6	27
28	Unexpected Equilibrium Ionic Distribution in Cyanine/C ₆₀ Heterojunctions. Advanced Materials Interfaces, 2017, 4, 1600891.	3.7	2
29	A transparent, solvent-free laminated top electrode for perovskite solar cells. Science and Technology of Advanced Materials, 2016, 17, 260-266.	6.1	44
30	Interfacial self-assembly of nanoporous C ₆₀ thin films. RSC Advances, 2016, 6, 23141-23147.	3.6	5
31	Doping Evolution and Junction Formation in Stacked Cyanine Dye Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2016, 8, 6554-6562.	8.0	30
32	Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C ₆₀ bilayer solar cells. Science and Technology of Advanced Materials, 2015, 16, 035003.	6.1	10
33	Dissociation of Charge Transfer States and Carrier Separation in Bilayer Organic Solar Cells: A Time-Resolved Electroabsorption Spectroscopy Study. Journal of the American Chemical Society, 2015, 137, 8192-8198.	13.7	86
34	Transparent Organic Photodetector using a Near-Infrared Absorbing Cyanine Dye. Scientific Reports, 2015, 5, 9439.	3.3	109
35	Photochemical Transformations in Fullerene and Molybdenum Oxide Affect the Stability of Bilayer Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1400734.	19.5	55
36	Influence of Molybdenum Oxide Interface Solvent Sensitivity on Charge Trapping in Bilayer Cyanine Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17036-17045.	3.1	19