
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/780865/publications.pdf Version: 2024-02-01

DA-JENC YAO

#	Article	IF	CITATIONS
1	Detection of the Freshness of Kiwifruit With a TD-GC-MS and a Gas-Sensing Array Based on the Surface-Acoustic-Wave Technique. IEEE Transactions on Nanobioscience, 2022, 21, 363-369.	3.3	4
2	A High-Voltage TENG-Based Droplet Energy Generator With Ultralow Liquid Consumption. IEEE Transactions on Nanobioscience, 2022, 21, 358-362.	3.3	6
3	Identification of Microorganisms Using an EWOD System. Micromachines, 2022, 13, 189.	2.9	2
4	DNA Sequencing from Subcritical Concentration of Cell-Free DNA Extracted from Electrowetting-on-Dielectric Platform. Micromachines, 2022, 13, 507.	2.9	1
5	Microfluidic Microalgae System: A Review. Molecules, 2022, 27, 1910.	3.8	3
6	Design process of a vacuum freeze dryer: Simultaneous endpoint determination using measurement of both temperature and relative humidity. Journal of Food Process Engineering, 2022, 45, .	2.9	1
7	Shapeâ€Mediated Magnetocrystalline Anisotropy and Relaxation Controls by Cobalt Ferrite Core–Shell Heterostructures for Magnetothermal Penetration Delivery (Adv. Mater. Interfaces 12/2022). Advanced Materials Interfaces, 2022, 9, .	3.7	0
8	Contactless Micro-Droplet Manipulation of Liquid Released from a Parallel Plate to an Open Region in Electrowetting-on-Dielectric Platform. Micromachines, 2022, 13, 898.	2.9	1
9	Sensitivity Enhancement and Probiotic Detection of Microfluidic Chips Based on Terahertz Radiation Combined with Metamaterial Technology. Micromachines, 2022, 13, 904.	2.9	2
10	Utilization of a Gas-Sensing System to Discriminate Smell and to Monitor Fermentation during the Manufacture of Oolong Tea Leaves. Micromachines, 2021, 12, 93.	2.9	6
11	Detection of Transferrin Receptor CD71 on a Shear Horizontal Surface Acoustic Wave Biosensor. IEEE Open Journal of Nanotechnology, 2021, 2, 1-7.	2.0	2
12	Extracellular and intracellular intermittent magnetic-fluid hyperthermia treatment of SK-Hep1 hepatocellular carcinoma cells based on magnetic nanoparticles coated with polystyrene sulfonic acid. PLoS ONE, 2021, 16, e0245286.	2.5	7
13	An Easily Accessible Microfluidic Chip for High-Throughput Microalgae Screening for Biofuel Production. Energies, 2021, 14, 1817.	3.1	14
14	A Review on Microfluidics: An Aid to Assisted Reproductive Technology. Molecules, 2021, 26, 4354.	3.8	18
15	Virtual Stencil for Patterning and Modeling in a Quantitative Volume Using EWOD and DEP Devices for Microfluidics. Micromachines, 2021, 12, 1104.	2.9	2
16	Effects of Electromagnets on Bovine Corneal Endothelial Cells Treated with Dendrimer Functionalized Magnetic Nanoparticles. Polymers, 2021, 13, 3306.	4.5	1
17	A microfluidic lab chip for the manipulation and co-culturing of embryos with stromal cells. Sensors and Actuators B: Chemical, 2021, 349, 130820.	7.8	3
18	Simultaneous detection of two growth factors from human single-embryo culture medium by a bead-based digital microfluidic chip. Biosensors and Bioelectronics, 2020, 150, 111851.	10.1	28

#	Article	IF	CITATIONS
19	Synthesis and characterization of magnetic nanoparticles coated with polystyrene sulfonic acid for biomedical applications. Science and Technology of Advanced Materials, 2020, 21, 471-481.	6.1	24
20	Using a Dielectrophoretic Microfluidic Biochip Enhanced Fertilization of Mouse Embryo in Vitro. Micromachines, 2020, 11, 714.	2.9	6
21	Frequency Shift of a SH-SAW Biosensor with Glutaraldehyde and 3-Aminopropyltriethoxysilane Functionalized Films for Detection of Epidermal Growth Factor. Biosensors, 2020, 10, 92.	4.7	17
22	Synergic Effect of Novel WS2 Carriers Holding Spherical Cobalt Ferrite @cubic Fe3O4 (WS2/s-CoFe2O4@c-Fe3O4) Nanocomposites in Magnetic Resonance Imaging and Photothermal Therapy for Ocular Treatments and Investigation of Corneal Endothelial Cell Migration. Nanomaterials, 2020, 10, 2555.	4.1	8
23	Extraction of Cell-free Dna from An Embryo-culture Medium Using Micro-scale Bio-reagents on Ewod. Scientific Reports, 2020, 10, 9708.	3.3	19
24	Using a Digital Microfluidic System to Evaluate the Stretch Length of a Droplet with a L-DEP and Varied Parameters. Inventions, 2020, 5, 21.	2.5	1
25	A medical innovation: a new and improved method of DNA extraction with electrowetting-on-dielectric of genetic testing in-vitro fertilization (IVF). Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	10
26	Application of a Terahertz System Combined with an X-Shaped Metamaterial Microfluidic Cartridge. Micromachines, 2020, 11, 74.	2.9	6
27	Synthesis of ironâ€oxide magnetic nanoparticles coated with dextran of varied molecular mass using a facile ballâ€milling method. Micro and Nano Letters, 2020, 15, 645-650.	1.3	6
28	Microfluidic patterning using a digital microfluidic system. AIP Advances, 2020, 10, .	1.3	6
29	Printed Resistive Sensor Array Combined with a Flexible Substrate for Ethanol and Methane Detection. ECS Journal of Solid State Science and Technology, 2020, 9, 115008.	1.8	12
30	Motility-driven Sperm-sorting Microfluidic Chip with Little Cell Damage for Oligozoospermia Patients. Sensors and Materials, 2020, 32, 2585.	0.5	4
31	Unveiling the Potential of Droplet Generation, Sorting, Expansion, and Restoration in Microfluidic Biochips. Micromachines, 2019, 10, 756.	2.9	2
32	Detection of Cigarette Smoke Using a Surface-Acoustic-Wave Gas Sensor with Non-Polymer-Based Oxidized Hollow Mesoporous Carbon Nanospheres. Micromachines, 2019, 10, 276.	2.9	8
33	Discrimination of Red Wines with a Gas-Sensor Array Based on a Surface-Acoustic-Wave Technique. Micromachines, 2019, 10, 725.	2.9	6
34	Detection of Hazardous Vapors Including Mixtures in Varied Conditions Using a Surface-Acoustic-Wave Device. ECS Journal of Solid State Science and Technology, 2018, 7, Q3120-Q3125.	1.8	6
35	Cell Detection in Microfluidic System by Terahertz Technique. , 2018, , .		0
36	Guest Editorial: Selected Papers from the 13th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEEâ€NEMS 2018). Micro and Nano Letters, 2018, 13, 1510-1510.	1.3	2

IF # ARTICLE CITATIONS A Simple Imaging Device for Fluorescence-Relevant Applications. Micromachines, 2018, 9, 418. Low DNA damage sperm sorting with varied viscosities in microfluidic chip., 2018, ... 38 0 ACâ€electricâ€fieldâ€induced parthenogenesis of mouse oocyte. Micro and Nano Letters, 2018, 13, 794-797. 1.3 The Separation of Microalgae Using Dean Flow in a Spiral Microfluidic Device. Inventions, 2018, 3, 40. 40 2.515 Dielectrophoretic Microfluidic Device for in Vitro Fertilization. Micromachines, 2018, 9, 135. Detection of Particulate Matter of Size 2.5 11/4m with a Surface-Acoustic-Wave Sensor Combined with a 42 2.9 5 Cyclone Separator. Micromachines, 2018, 9, 398. Using EWOD chip for the culture medium movement and dynamic culture of mouse embryos., 2018, , . Intelligent gas-sensing systems and their applications. Journal of Micromechanics and 44 2.6 33 Microengineering, 2018, 28, 093001. Enhanced efficiency of sorting sperm motility utilizing a microfluidic chip. Microsystem Technologies, 2017, 23, 305-312. An effective temperature compensation algorithm for CMOS-MEMS thermal-piezoresistive oscillators 46 5 with SUB PPM/°C thermal stability., 2017,,. Bead-based digital microfluidic immunoassay for IL- $1\hat{1}^2$ detection in embryo culture medium., 2017,,. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor. 48 2.4 12 Biomicrofluidics, 2016, 10, 011907. A highly efficient bead extraction technique with low bead number for digital microfluidic 2.4 immunoassay. Biomicrofluidics, 2016, 10, 011901. Optimization of a waste heat recovery system with thermoelectric generators by three-dimensional 50 9.2 41 thermal resistance analysis. Energy Conversion and Management, 2016, 126, 581-594. Womb-on-a-chip biomimetic system for improved embryo culture and development. Sensors and Actuators B: Chemical, 2016, 226, 218-226. Get to Understand More from Single-Cells: Current Studies of Microfluidic-Based Techniques for 52 4.1 32 Single-Cell Analysis. International Journal of Molecular Sciences, 2015, 16, 16763-16777. Using a Microfluidic Gradient Generator to Characterize BG-11 Medium for the Growth of Cyanobacteria Synechococcus elongatus PCC7942. Micromachines, 2015, 6, 1755-1767. Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a 54 2.4 22 low-pressure chemical vapor deposited Si3N4 dielectric layer. Biomicrofluidics, 2015, 9, 022403.

DA-JENG YAO

#	Article	IF	CITATIONS
55	In vitro dynamic fertilization by using EWOD device. , 2015, , .		1
56	Embryo formation from low sperm concentration by using dielectrophoretic force. Biomicrofluidics, 2015, 9, 022404.	2.4	17
57	Preface to Special Topic: Select Papers from the 8th IEEE International Conference on Nano/Molecular Medicine and Engineering Held in Kaohsiung, Taiwan. Biomicrofluidics, 2015, 9, 022301.	2.4	0
58	An approach to enhance self-compensation capability in paper-based devices for chemical sensing. Talanta, 2015, 145, 29-34.	5.5	3
59	Microwells support high-resolution time-lapse imaging and development of preimplanted mouse embryos. Biomicrofluidics, 2015, 9, 022407.	2.4	19
60	Paper-based device for separation and cultivation of single microalga. Talanta, 2015, 145, 60-65.	5.5	10
61	Fertilization of Mouse Gametes in Vitro Using a Digital Microfluidic System. IEEE Transactions on Nanobioscience, 2015, 14, 857-863.	3.3	11
62	Centrifugal Filter Device for Detection of Rare Cells With Immuno-Binding. IEEE Transactions on Nanobioscience, 2015, 14, 864-869.	3.3	3
63	Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip. PLoS ONE, 2015, 10, e0124196.	2.5	43
64	Detection of Cancer Cells on a Chip. Current Topics in Medicinal Chemistry, 2015, 15, 1543-1550.	2.1	5
65	Model for Increasing the Power Obtained from a Thermoelectric Generator Module. Journal of Electronic Materials, 2014, 43, 2337-2343.	2.2	6
66	Realization of an ultra-sensitive hydrogen peroxide sensor with conductance change of horseradish peroxidase-immobilized polyaniline and investigation of the sensing mechanism. Biosensors and Bioelectronics, 2014, 55, 294-300.	10.1	28
67	A multilayer concentric filter device to diminish clogging for separation of particles and microalgae based on size. Lab on A Chip, 2014, 14, 1459-1468.	6.0	10
68	Isolation of Motile Spermatozoa with a Microfluidic Chip Having a Surface-Modified Microchannel. Journal of the Association for Laboratory Automation, 2014, 19, 91-99.	2.8	20
69	EWOD microfluidic systems for biomedical applications. Microfluidics and Nanofluidics, 2014, 16, 965-987.	2.2	100
70	Two-Dimensional Thermal Resistance Analysis of a Waste Heat Recovery System with Thermoelectric Generators. Journal of Electronic Materials, 2013, 42, 1982-1987.	2.2	4
71	Evaluation of Temperature-Dependent Effective Material Properties and Performance of a Thermoelectric Module. Journal of Electronic Materials, 2013, 42, 2362-2370.	2.2	11
72	Thermal conductivity of thermoelectric thick films prepared by electrodeposition. Applied Thermal Engineering, 2013, 51, 75-83.	6.0	11

#	Article	IF	CITATIONS
73	A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 600-604.	3.3	86
74	Molecular-level dengue fever diagnostic devices made out of paper. Lab on A Chip, 2013, 13, 2686.	6.0	68
75	Detection of Cells Captured with Antigens on Shear Horizontal Surface-Acoustic-Wave Sensors. Journal of the Association for Laboratory Automation, 2013, 18, 69-76.	2.8	11
76	Gas sensor array based on surface acoustic wave devices for rapid multi-detection. , 2012, , .		5
77	Fission and fusion of droplets in a 3-D crossing microstructure. Microfluidics and Nanofluidics, 2012, 13, 239-247.	2.2	9
78	Applications of EWOD Systems for DNA Reaction and Analysis. Journal of Adhesion Science and Technology, 2012, 26, 1789-1804.	2.6	24
79	SNP detection based on temperature-controllable EWOD digital microfluidics system. , 2012, , .		1
80	Polymer/Ordered Mesoporous Carbon Nanocomposite Platelets as Superior Sensing Materials for Gas Detection with Surface Acoustic Wave Devices. Langmuir, 2012, 28, 11639-11645.	3.5	24
81	Molecular-Level Dengue Fever Diagnostics: Developing a Combination of RT-LAMP and Paper-Based Devices. IEEE Nanotechnology Magazine, 2012, 6, 26-30.	1.3	10
82	A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation. Lab on A Chip, 2011, 11, 1647.	6.0	46
83	An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module. Applied Energy, 2011, 88, 5173-5179.	10.1	119
84	Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators. Applied Energy, 2011, 88, 1291-1297.	10.1	334
85	A cone-shaped 3D carbon nanotube probe for neural recording. Biosensors and Bioelectronics, 2010, 26, 220-227.	10.1	39
86	Improving the adhesion of carbon nanotubes to a substrate using microwave treatment. Carbon, 2010, 48, 805-812.	10.3	51
87	Gas sensor array based on surface acoustic wave devices for vapors detection and analysis. , 2010, , .		5
88	Design and Analysis of an In-Plane Thermoelectric Microcooler. Nanoscale and Microscale Thermophysical Engineering, 2010, 14, 95-109.	2.6	6
89	Hydrophilic modification of neural microelectrode arrays based on multi-walled carbon nanotubes. Nanotechnology, 2010, 21, 485501.	2.6	30
90	A large uniform monolayer area obtained by droplet evaporation in microwells. , 2010, , .		1

#	Article	IF	CITATIONS
91	Renewable energy of waste heat recovery system for automobiles. Journal of Renewable and Sustainable Energy, 2010, 2, .	2.0	52
92	Efficient reuse of waste energy. IEEE Nanotechnology Magazine, 2009, 3, 28-33.	1.3	19
93	Micro-multi-probe electrode array to measure neural signals. Biosensors and Bioelectronics, 2009, 24, 1911-1917.	10.1	21
94	Magnetic bead-based DNA detection with multi-layers quantum dots labeling for rapid detection of Escherichia coli O157:H7. Biosensors and Bioelectronics, 2008, 24, 558-565.	10.1	49
95	DNA ligation of ultramicro volume using an EWOD microfluidic system with coplanar electrodes. Journal of Micromechanics and Microengineering, 2008, 18, 045017.	2.6	57
96	Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric. Applied Physics Letters, 2008, 93, .	3.3	40
97	Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film. Review of Scientific Instruments, 2008, 79, 054902.	1.3	70
98	Optimal Design of Micro Rayleigh-Benard Convection Polymerase Chain Reaction System. , 0, , .		0
99	Shapeâ€Mediated Magnetocrystalline Anisotropy and Relaxation Controls by Cobalt Ferrite Core–Shell Heterostructures for Magnetothermal Penetration Delivery. Advanced Materials Interfaces, 0, , 2200022.	3.7	1