Steven V Weijs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7808634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple Model Predictive Control on a drainage canal system. Control Engineering Practice, 2008, 16, 531-540.	3.2	110
2	Why hydrological predictions should be evaluated using information theory. Hydrology and Earth System Sciences, 2010, 14, 2545-2558.	1.9	99
3	A philosophical basis for hydrological uncertainty. Hydrological Sciences Journal, 2016, 61, 1666-1678.	1.2	98
4	Advancing catchment hydrology to deal with predictions under change. Hydrology and Earth System Sciences, 2014, 18, 649-671.	1.9	83
5	Geomorphic signatures on Brutsaert base flow recession analysis. Water Resources Research, 2013, 49, 5462-5472.	1.7	70
6	Kullback–Leibler Divergence as a Forecast Skill Score with Classic Reliability–Resolution–Uncertainty Decomposition. Monthly Weather Review, 2010, 138, 3387-3399.	0.5	67
7	Controls on the diurnal streamflow cycles in two subbasins of an alpine headwater catchment. Water Resources Research, 2015, 51, 3403-3418.	1.7	35
8	Accounting for Observational Uncertainty in Forecast Verification: An Information-Theoretical View on Forecasts, Observations, and Truth. Monthly Weather Review, 2011, 139, 2156-2162.	0.5	28
9	Could electrical conductivity replace water level in rating curves for alpine streams?. Water Resources Research, 2013, 49, 343-351.	1.7	23
10	HydroZIP: How Hydrological Knowledge can Be Used to Improve Compression of Hydrological Data. Entropy, 2013, 15, 1289-1310.	1.1	20
11	Data compression to define information content of hydrological time series. Hydrology and Earth System Sciences, 2013, 17, 3171-3187.	1.9	19
12	Soil Moisture & Snow Properties Determination with GNSS in Alpine Environments: Challenges, Status, and Perspectives. Remote Sensing, 2013, 5, 3516-3543.	1.8	18
13	Using the Wiimote as a sensor in water research. Water Resources Research, 2010, 46, .	1.7	12
14	Debates: Does Information Theory Provide a New Paradigm for Earth Science? Sharper Predictions Using Occam's Digital Razor. Water Resources Research, 2020, 56, e2019WR026471.	1.7	12
15	Reservoir Operation Optimized for Hydropower Production Reduces Conflict with Traditional Water Uses in the Senegal River. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	10
16	An information-theoretical perspective on weighted ensemble forecasts. Journal of Hydrology, 2013, 498, 177-190.	2.3	9
17	Entropy Ensemble Filter: A Modified Bootstrap Aggregating (Bagging) Procedure to Improve Efficiency in Ensemble Model Simulation. Entropy, 2017, 19, 520.	1.1	9
18	Dependency and Redundancy: How Information Theory Untangles Three Variable Interactions in Environmental Data. Water Resources Research, 2018, 54, 7143-7148.	1.7	8

STEVEN V WEIJS

#	Article	IF	CITATIONS
19	Application of Entropy Ensemble Filter in Neural Network Forecasts of Tropical Pacific Sea Surface Temperatures. Entropy, 2018, 20, 207.	1.1	7
20	Balancing Costs and Benefits in Selecting New Information: Efficient Monitoring Using Deterministic Hydro-economic Models. Water Resources Management, 2018, 32, 339-357.	1.9	5
21	Objective functions for information-theoretical monitoring network design: what is "optimal�. Hydrology and Earth System Sciences, 2021, 25, 831-850.	1.9	5
22	Technical note: "Bit by bitâ€: a practical and general approach for evaluating model computational complexity vs.Âmodel performance. Hydrology and Earth System Sciences, 2021, 25, 1103-1115.	1.9	4
23	Preface—Special Issue: Facets of Uncertainty. Hydrological Sciences Journal, 2016, 61, 1555-1556.	1.2	3
24	Linking water and energy objectives in lowland areas through the application of model predictive control. , 2010, , .		1