Liana C Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7808486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laurdan in live cell imaging: Effect of acquisition settings, cell culture conditions and data analysis on generalized polarization measurements. Journal of Photochemistry and Photobiology B: Biology, 2022, 228, 112404.	1.7	8
2	NBD derived diphenyl(aminomethyl)phosphane – A new fluorescent dye for imaging of low pH regions and lipid membranes in living cells. Dyes and Pigments, 2021, 184, 108771.	2.0	11
3	Sphingolipid-Enriched Domains in Yeast: Biophysical Properties and Antifungal Interaction. Biophysical Journal, 2021, 120, 45a.	0.2	0
4	The long chain base unsaturation has a stronger impact on 1-deoxy(methyl)-sphingolipids biophysical properties than the structure of its C1 functional group. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183628.	1.4	4
5	Biophysical impact of sphingosine and other abnormal lipid accumulation in Niemann-Pick disease type C cell models. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158944.	1.2	1
6	Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence Spectroscopy. Methods in Molecular Biology, 2021, 2187, 247-269.	0.4	2
7	Biophysical Analysis of Lipid Domains by Fluorescence Microscopy. Methods in Molecular Biology, 2021, 2187, 223-245.	0.4	2
8	The role of ceramide in regulating endoplasmic reticulum function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158489.	1.2	29
9	Sphingolipid metabolism and signaling: embracing diversity. FEBS Letters, 2020, 594, 3579-3582.	1.3	4
10	Canonical and 1-Deoxy(methyl) Sphingoid Bases: Tackling the Effect of the Lipid Structure on Membrane Biophysical Properties. Langmuir, 2020, 36, 6007-6016.	1.6	5
11	Lipid domain formation and membrane shaping by C24-ceramide. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183400.	1.4	11
12	Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Progress in Lipid Research, 2019, 75, 100988.	5.3	24
13	Meeting Report – The 2019 FEBS special meeting on sphingolipid biology: sphingolipids in physiology and pathology. Journal of Cell Science, 2019, 132, .	1.2	1
14	1-Deoxysphingolipids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 512-521.	1.2	69
15	Ceramide Domains in Health and Disease: A Biophysical Perspective. Advances in Experimental Medicine and Biology, 2019, 1159, 79-108.	0.8	11
16	Functional Moieties for Intracellular Traffic of Nanomaterials. , 2018, , 399-448.		4
17	<i>N,O</i> â€Iminoboronates: Reversible Iminoboronates with Improved Stability for Cancer Cells Targeted Delivery. Chemistry - A European Journal, 2018, 24, 12495-12499.	1.7	12
18	Cisplatin-Membrane Interactions and Their Influence on Platinum Complexes Activity and Toxicity. Frontiers in Physiology, 2018, 9, 1898.	1.3	78

LIANA C SILVA

#	Article	IF	CITATIONS
19	Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes. Physical Chemistry Chemical Physics, 2017, 19, 340-346.	1.3	28
20	The molecular mechanism of Nystatin action is dependent on the membrane biophysical properties and lipid composition. Physical Chemistry Chemical Physics, 2017, 19, 30078-30088.	1.3	28
21	Practical computational toolkits for dendrimers and dendrons structure design. Journal of Computer-Aided Molecular Design, 2017, 31, 817-827.	1.3	8
22	Poly-glutamic dendrimer-based conjugates for cancer vaccination – a computational design for targeted delivery of antigens. Journal of Drug Targeting, 2017, 25, 873-880.	2.1	9
23	Changes in membrane biophysical properties induced by the Budesonide/Hydroxypropyl-β-cyclodextrin complex. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1930-1940.	1.4	17
24	Development of lysosome-mimicking vesicles to study the effect of abnormal accumulation of sphingosine on membrane properties. Scientific Reports, 2017, 7, 3949.	1.6	23
25	Regulatory Development of Nanotechnology-Based Vaccines. , 2017, , 393-410.		5
26	Rational design of novel, fluorescent, tagged glutamic acid dendrimers with different terminal groups and in silico analysis of their properties. International Journal of Nanomedicine, 2017, Volume 12, 7053-7073.	3.3	15
27	A Three-Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes). Chemistry - A European Journal, 2016, 22, 1537-1537.	1.7	0
28	Spotlights on our sister journals: Chem. Eur. J. 44/2016. Chemistry - A European Journal, 2016, 22, 15564-15567.	1.7	0
29	A Threeâ€Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes). Chemistry - A European Journal, 2016, 22, 1631-1637.	1.7	56
30	Glucosylceramide Reorganizes Cholesterol-Containing Domains in a Fluid Phospholipid Membrane. Biophysical Journal, 2016, 110, 612-622.	0.2	24
31	Tackling the biophysical properties of sphingolipids to decipher their biological roles. Biological Chemistry, 2015, 396, 597-609.	1.2	20
32	Regulatory aspects on nanomedicines. Biochemical and Biophysical Research Communications, 2015, 468, 504-510.	1.0	256
33	Molecular Modeling to Study Dendrimers for Biomedical Applications. Molecules, 2014, 19, 20424-20467.	1.7	66
34	Development of functionalized nanoparticles for vaccine delivery to dendritic cells: a mechanistic approach. Nanomedicine, 2014, 9, 2639-2656.	1.7	37
35	Regulatory Aspects of Oncologicals: Nanosystems Main Challenges. Advances in Delivery Science and Technology, 2014, , 425-452.	0.4	14
36	Ceramide: A simple sphingolipid with unique biophysical properties. Progress in Lipid Research, 2014, 54, 53-67.	5.3	290

LIANA C SILVA

#	Article	IF	CITATIONS
37	Influence of Intracellular Membrane pH on Sphingolipid Organization and Membrane Biophysical Properties. Langmuir, 2014, 30, 4094-4104.	1.6	12
38	Biophysical Implications of Sphingosine Accumulation in Membrane Properties at Neutral and Acidic pH. Journal of Physical Chemistry B, 2014, 118, 4858-4866.	1.2	19
39	Changes in membrane biophysical properties induced by sphingomyelinase depend on the sphingolipid N-acyl chain. Journal of Lipid Research, 2014, 55, 53-61.	2.0	51
40	Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Frontiers in Chemistry, 2014, 2, 105.	1.8	147
41	A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2099-2110.	1.4	38
42	Effect of glucosylceramide on the biophysical properties of fluid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1122-1130.	1.4	32
43	Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. Journal of Lipid Research, 2012, 53, 430-436.	2.0	62
44	Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans. Cellular Microbiology, 2012, 14, 500-516.	1.1	67
45	Effect of ceramide structure on membrane biophysical properties: The role of acyl chain length and unsaturation. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2753-2760.	1.4	172
46	A Critical Role for Ceramide Synthase 2 in Liver Homeostasis. Journal of Biological Chemistry, 2010, 285, 10902-10910.	1.6	213
47	Cholesterol-Rich Fluid Membranes Solubilize Ceramide Gel Domains. Implications for the Organization of Mammalian Membranes. Biophysical Journal, 2010, 98, 230a.	0.2	1
48	Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations. Biophysical Journal, 2010, 98, 205a.	0.2	0
49	Cholesterol-rich Fluid Membranes Solubilize Ceramide Domains. Journal of Biological Chemistry, 2009, 284, 22978-22987.	1.6	127
50	FRET analysis of domain formation and properties in complex membrane systems. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 209-224.	1.4	46
51	Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations. Biophysical Journal, 2009, 96, 3210-3222.	0.2	87
52	Interdigitation, Domains and Morphology, in Membranes of the Chain Asymmetric C24:1 Ceramide. Biophysical Journal, 2009, 96, 355a.	0.2	0
53	Interactions of Ceramide and Sphingomyelin Quantified in Mixtures with an Unsaturated Phosphatidylcholine. Biophysical Journal, 2009, 96, 355a-356a.	0.2	0
54	Membrane Domain Formation, Interdigitation, and Morphological Alterations Induced by the Very Long Chain Asymmetric C24:1 Ceramide. Biophysical Journal, 2008, 95, 2867-2879.	0.2	104

LIANA C SILVA

#	Article	IF	CITATIONS
55	Ceramide-containing membranes: the interface between biophysics and biology. Trends in Glycoscience and Glycotechnology, 2008, 20, 297-313.	0.0	8
56	Ceramide-Domain Formation and Collapse in Lipid Rafts: Membrane Reorganization by an Apoptotic Lipid. Biophysical Journal, 2007, 92, 502-516.	0.2	169
57	Formation of Ceramide/Sphingomyelin Gel Domains in the Presence of an Unsaturated Phospholipid: A Quantitative Multiprobe Approach. Biophysical Journal, 2007, 93, 1639-1650.	0.2	118
58	Ceramide-platform formation and -induced biophysical changes in a fluid phospholipid membrane. Molecular Membrane Biology, 2006, 23, 137-148.	2.0	119
59	Competitive Binding of Cholesterol and Ergosterol to the Polyene Antibiotic Nystatin. A Fluorescence Study. Biophysical Journal, 2006, 90, 3625-3631.	0.2	47
60	Nystatin-induced lipid vesicles permeabilization is strongly dependent on sterol structure. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 452-459.	1.4	31
61	Cholesterol and Ergosterol Influence Nystatin Surface Aggregation: Relation to Pore Formation. Biophysical Journal, 2004, 87, 3264-3276.	0.2	59
62	Solution conformation of a nitrobenzoxadiazole derivative of the polyene antibiotic nystatin: a FRET study. Journal of Photochemistry and Photobiology B: Biology, 2003, 72, 17-26.	1.7	3
63	Conformation and self-assembly of a nystatin nitrobenzoxadiazole derivative in lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1617, 69-79.	1.4	9