Han Wei Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/780803/publications.pdf Version: 2024-02-01

ΗΔΝΙ Μ/ΕΙ ΗΟΙΙ

#	Article	IF	CITATIONS
1	Understanding stenosis-induced platelet aggregation on a chip by high-speed optical imaging. Sensors and Actuators B: Chemical, 2022, 356, 131318.	4.0	4
2	Microfluidic Size Exclusion Chromatography (μSEC) for Extracellular Vesicles and Plasma Protein Separation. Small, 2022, 18, e2104470.	5.2	20
3	Hyaluronidase-1-mediated glycocalyx impairment underlies endothelial abnormalities in polypoidal choroidal vasculopathy. BMC Biology, 2022, 20, 47.	1.7	3
4	Microfluidic Impedanceâ€Deformability Cytometry for Labelâ€Free Single Neutrophil Mechanophenotyping. Small, 2022, 18, e2104822.	5.2	24
5	Microfluidic Impedanceâ€Deformability Cytometry for Labelâ€Free Single Neutrophil Mechanophenotyping (Small 18/2022). Small, 2022, 18, .	5.2	1
6	A novel human arterial wall-on-a-chip to study endothelial inflammation and vascular smooth muscle cell migration in early atherosclerosis. Lab on A Chip, 2021, 21, 2359-2371.	3.1	27
7	Direct and Labelâ€Free Cell Status Monitoring of Spheroids and Microcarriers Using Microfluidic Impedance Cytometry. Small, 2021, 17, e2007500.	5.2	28
8	Microfluidics: Direct and Labelâ€Free Cell Status Monitoring of Spheroids and Microcarriers Using Microfluidic Impedance Cytometry (Small 21/2021). Small, 2021, 17, 2170101.	5.2	0
9	FUT6 deficiency compromises basophil function by selectively abrogating their sialyl-Lewis x expression. Communications Biology, 2021, 4, 832.	2.0	7
10	Leucine-Rich α-2-Glycoprotein 1 Suppresses Endothelial Cell Activation Through ADAM10-Mediated Shedding of TNF-α Receptor. Frontiers in Cell and Developmental Biology, 2021, 9, 706143.	1.8	11
11	Single Cell Metabolite Detection Using Inertial Microfluidics-Assisted Ion Mobility Mass Spectrometry. Analytical Chemistry, 2021, 93, 10462-10468.	3.2	30
12	Label-free quantitative lymphocyte activation profiling using microfluidic impedance cytometry. Sensors and Actuators B: Chemical, 2021, 339, 129864.	4.0	24
13	Direct isolation of circulating extracellular vesicles from blood for vascular risk profiling in type 2 diabetes mellitus. Lab on A Chip, 2021, 21, 2511-2523.	3.1	33
14	A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array. Biosensors, 2021, 11, 509.	2.3	16
15	Recapitulating atherogenic flow disturbances and vascular inflammation in a perfusable 3D stenosis model. Biofabrication, 2020, 12, 045009.	3.7	22
16	Potentâ€Byâ€Design: Amino Acids Mimicking Porous Nanotherapeutics with Intrinsic Anticancer Targeting Properties. Small, 2020, 16, e2003757.	5.2	20
17	Increased monocyteâ€platelet aggregates and monocyteâ€endothelial adhesion in healthy individuals with vitamin D deficiency. FASEB Journal, 2020, 34, 11133-11142.	0.2	17
18	A Multifunctional Role of Leucine-Rich α-2-Glycoprotein 1 in Cutaneous Wound Healing Under Normal and Diabetic Conditions. Diabetes, 2020, 69, 2467-2480.	0.3	41

HAN WEI HOU

#	Article	IF	CITATIONS
19	Spiral Inertial Microfluidics for Cell Separation and Biomedical Applications. Bioanalysis, 2019, , 99-150.	0.1	24
20	Integrated inertial-impedance cytometry for rapid label-free leukocyte isolation and profiling of neutrophil extracellular traps (NETs). Lab on A Chip, 2019, 19, 1736-1746.	3.1	59
21	Neutrophil Phenotyping: A Novel Microdevice for Rapid Neutrophil Purification and Phenotyping in Type 2 Diabetes Mellitus (Small 6/2018). Small, 2018, 14, 1870025.	5.2	Ο
22	A tunable microfluidic 3D stenosis model to study leukocyte-endothelial interactions in atherosclerosis. APL Bioengineering, 2018, 2, 016103.	3.3	57
23	A Novel Microdevice for Rapid Neutrophil Purification and Phenotyping in Type 2 Diabetes Mellitus. Small, 2018, 14, 1702832.	5.2	22
24	Multiplexed Label-Free Fractionation of Peripheral Blood Mononuclear Cells for Identification of Monocyte–Platelet Aggregates. Analytical Chemistry, 2018, 90, 14535-14542.	3.2	15
25	Label-free leukocyte sorting and impedance-based profiling for diabetes testing. Biosensors and Bioelectronics, 2018, 118, 195-203.	5.3	38
26	Preservation of Anticancer and Immunosuppressive Properties of Rapamycin Achieved Through Controlled Releasing Particles. AAPS PharmSciTech, 2017, 18, 2648-2657.	1.5	12
27	Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nature Medicine, 2017, 23, 235-241.	15.2	263
28	Rapid purification of sub-micrometer particles for enhanced drug release and microvesicles isolation. NPG Asia Materials, 2017, 9, e434-e434.	3.8	44
29	Thrombin-derived host defence peptide modulates neutrophil rolling and migration in vitro and functional response in vivo. Scientific Reports, 2017, 7, 11201.	1.6	7
30	A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- μm-Pitch Super-Resolution Image Sensor in 65-nm BSI CMOS. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 794-803.	2.7	21
31	Micro-engineered perfusable 3D vasculatures for cardiovascular diseases. Lab on A Chip, 2017, 17, 2960-2968.	3.1	56
32	Advances in Single Cell Impedance Cytometry for Biomedical Applications. Micromachines, 2017, 8, 87.	1.4	82
33	Rapid and label-free microfluidic neutrophil purification and phenotyping in diabetes mellitus. Scientific Reports, 2016, 6, 29410.	1.6	51
34	A convolutional neural network based single-frame super-resolution for lensless blood cell counting. , 2016, , .		3
35	Monitoring sepsis using electrical cell profiling. Lab on A Chip, 2016, 16, 4333-4340.	3.1	35
36	Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics. Scientific Reports, 2016, 6, 23589.	1.6	62

HAN WEI HOU

#	Article	IF	CITATIONS
37	Microfluidic Buffer Exchange for Interference-free Micro/Nanoparticle Cell Engineering. Journal of Visualized Experiments, 2016, , .	0.2	2
38	Broad spectrum immunomodulation using biomimetic blood cell margination for sepsis therapy. Lab on A Chip, 2016, 16, 688-699.	3.1	21
39	Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX). Scientific Reports, 2015, 5, 11347.	1.6	57
40	Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection. Scientific Reports, 2015, 5, 11425.	1.6	63
41	Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. Lab on A Chip, 2015, 15, 2297-2307.	3.1	119
42	Towards microfluidic-based depletion of stiff and fragile human red cells that accumulate during blood storage. Lab on A Chip, 2015, 15, 448-458.	3.1	23
43	Interference-free Micro/nanoparticle Cell Engineering by Use of High-Throughput Microfluidic Separation. ACS Applied Materials & Interfaces, 2015, 7, 20855-20864.	4.0	21
44	Isolation and retrieval of circulating tumor cells using centrifugal forces. Scientific Reports, 2013, 3, 1259.	1.6	618
45	Separation of Leukocytes from Blood Using Spiral Channel with Trapezoid Cross-Section. Analytical Chemistry, 2012, 84, 9324-9331.	3.2	191
46	Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab on A Chip, 2011, 11, 1870.	3.1	320
47	Flow Sensing of Single Cell by Graphene Transistor in a Microfluidic Channel. Nano Letters, 2011, 11, 5240-5246.	4.5	106
48	Microfluidic Devices for Blood Fractionation. Micromachines, 2011, 2, 319-343.	1.4	141
49	Microfluidics for Applications in Cell Mechanics and Mechanobiology. Cellular and Molecular Bioengineering, 2011, 4, 591-602.	1.0	36
50	Microfluidics for cell separation. Medical and Biological Engineering and Computing, 2010, 48, 999-1014.	1.6	531
51	Deformability Based Cell Margination – A Simple Microfluidic Design for Malarial Infected Red Blood Cell Filtration. IFMBE Proceedings, 2010, , 1671-1674.	0.2	3
52	Deformability based cell margination—A simple microfluidic design for malaria-infected erythrocyte separation. Lab on A Chip, 2010, 10, 2605.	3.1	269