Pussana Hirunsit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7807884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insight into the Roles of Metal Loading on CO2 Photocatalytic Reduction Behaviors of TiO2. Nanomaterials, 2022, 12, 474.	1.9	10
2	Synergistic Effects of V and Ni Catalysts on Hydrogen Sorption Kinetics of Mg-Based Hydrogen Storage Materials: A Computational Study. Journal of Physical Chemistry C, 2022, 126, 5483-5492.	1.5	5
3	Cu-Al spinel-oxide catalysts for selective hydrogenation of furfural to furfuryl alcohol. Catalysis Today, 2021, 367, 177-188.	2.2	25
4	Ni-doped activated carbon nanofibers for storing hydrogen at ambient temperature: Experiments and computations. Fuel, 2021, 288, 119608.	3.4	21
5	Mechanistic Study of the Effect of Epoxy Groups on Ethylene Carbonate Decomposition Reaction on Carbon Anodes of Sodium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 8031-8044.	1.5	2
6	Comprehensive Mechanism of CO ₂ Electroreduction toward Ethylene and Ethanol: The Solvent Effect from Explicit Water–Cu(100) Interface Models. ACS Catalysis, 2021, 11, 9688-9701.	5.5	65
7	Electronic and thermodynamic properties of native point defects in V ₂ O ₅ : a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 11374-11387.	1.3	18
8	Tuning CuZn interfaces in metal–organic framework-derived electrocatalysts for enhancement of CO ₂ conversion to C ₂ products. Catalysis Science and Technology, 2021, 11, 8065-8078.	2.1	17
9	Cyclopentadithiophene and Diketo-pyrrolo-pyrrole fused rigid copolymer for high optical contrast electrochromic polymer. Journal of Polymer Research, 2020, 27, 1.	1.2	6
10	Electrochemical oxidation of resorcinol: mechanistic insights from experimental and computational studies. RSC Advances, 2020, 10, 28454-28463.	1.7	25
11	Effects of Fe doping on enhancing electrochemical properties of NiCo2S4 supercapacitor electrode. Electrochimica Acta, 2020, 340, 135939.	2.6	36
12	On the Enhanced Reducibility and Charge Transport Properties of Phosphorus-Doped BiVO4 as Photocatalysts: A Computational Study. Journal of Physical Chemistry C, 2020, 124, 4352-4362.	1.5	10
13	The Role of Metal Species on Aldehyde Hydrogenation over Co 13 and Ni 13 Supported on γâ€Al 2 O 3 (110) Surfaces: A Theoretical Study. ChemistrySelect, 2020, 5, 4058-4068.	0.7	6
14	Transport properties of electron small polarons in a V ₂ O ₅ cathode of Li-ion batteries: a computational study. RSC Advances, 2019, 9, 19483-19494.	1.7	31
15	New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance. Journal of Materials Chemistry A, 2019, 7, 8156-8166.	5.2	63
16	Lewis Acid Catalysis of Nb ₂ O ₅ for Reactions of Carboxylic Acid Derivatives in the Presence of Basic Inhibitors. ChemCatChem, 2019, 11, 383-396.	1.8	53
17	Origin of Nb2 O5 Lewis Acid Catalysis for Activation of Carboxylic Acids in the Presence of a Hard Base. ChemPhysChem, 2018, 19, 2809-2809.	1.0	0
18	Origin of Nb ₂ O ₅ Lewis Acid Catalysis for Activation of Carboxylic Acids in the Presence of a Hard Base. ChemPhysChem, 2018, 19, 2848-2857.	1.0	28

Pussana Hirunsit

#	Article	IF	CITATIONS
19	On the Role of Sulfur for the Selective Electrochemical Reduction of CO ₂ to Formate on CuS _{<i>x</i>} Catalysts. ACS Applied Materials & Interfaces, 2018, 10, 28572-28581.	4.0	157
20	Electrochemical Reduction of CO ₂ Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective Formation of Ethylene. ACS Catalysis, 2017, 7, 1749-1756.	5.5	507
21	Electronic structures and quantum capacitance of monolayer and multilayer graphenes influenced by Al, B, N and P doping, and monovacancy: Theoretical study. Carbon, 2016, 108, 7-20.	5.4	99
22	Effect of alumina hydroxylation on glycerol hydrogenolysis to 1,2-propanediol over Cu/Al ₂ O ₃ : combined experiment and DFT investigation. RSC Advances, 2015, 5, 11188-11197.	1.7	42
23	CO ₂ Electrochemical Reduction to Methane and Methanol on Copper-Based Alloys: Theoretical Insight. Journal of Physical Chemistry C, 2015, 119, 8238-8249.	1.5	157
24	Cooperative H ₂ Activation at Ag Cluster/Î,-Al ₂ O ₃ (110) Dual Perimeter Sites: A Density Functional Theory Study. Journal of Physical Chemistry C, 2014, 118, 7996-8006.	1.5	31
25	Cu–Cr, Cu–Mn, and Cu–Fe Spinel-Oxide-Type Catalysts for Reforming of Oxygenated Hydrocarbons. Journal of Physical Chemistry C, 2013, 117, 23757-23765.	1.5	35
26	Catalytic behavior and surface species investigation over γ-Al2O3 in dimethyl ether hydrolysis. Applied Catalysis A: General, 2013, 460-461, 99-105.	2.2	13
27	Electroreduction of Carbon Dioxide to Methane on Copper, Copper–Silver, and Copper–Gold Catalysts: A DFT Study. Journal of Physical Chemistry C, 2013, 117, 8262-8268.	1.5	87
28	Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Materials, 2012, 11, 550-557.	13.3	2,423
29	Evolution of Pt and Pt-Alloy Catalytic Surfaces Under Oxygen Reduction Reaction in Acid Medium. Topics in Catalysis, 2012, 55, 322-335.	1.3	38
30	Evolution of a Pt (111) surface at high oxygen coverage in acid medium. Chemical Physics Letters, 2010, 498, 328-333.	1.2	15
31	Platinum-monolayer electrocatalysts: Palladium interlayer on IrCo alloy core improves activity in oxygen-reduction reaction. Journal of Electroanalytical Chemistry, 2010, 649, 232-237.	1.9	45
32	Shell-anchor-core structures for enhanced stability and catalytic oxygen reduction activity. Journal of Chemical Physics, 2010, 133, 134705.	1.2	18
33	Stability of Pt Monolayers on Irâ^'Co Cores with and without a Pd Interlayer. Journal of Physical Chemistry C, 2010, 114, 13055-13060.	1.5	19
34	Surface atomic distribution and water adsorption on Pt–Co alloys. Surface Science, 2009, 603, 912-920.	0.8	20
35	Effects of water and electric field on atomic oxygen adsorption on Pt–Co alloys. Surface Science, 2009, 603, 3239-3248.	0.8	22
36	Vibrational Spectra of Anhydrous and Monohydrated Caffeine and Theophylline Molecules and Crystals. Journal of Physical Chemistry A, 2008, 112, 10210-10219.	1.1	27

#	Article	IF	CITATIONS
37	Addition Reactions of Alkyl and Carboxyl Radicals to Vinylidene Fluoride. Journal of Physical Chemistry A, 2008, 112, 4483-4489.	1.1	7
38	Effects of Confinement on Small Water Clusters Structure and Proton Transport. Journal of Physical Chemistry A, 2007, 111, 10722-10731.	1.1	17
39	Effects of Confinement on Water Structure and Dynamics:  A Molecular Simulation Study. Journal of Physical Chemistry C, 2007, 111, 1709-1715.	1.5	105